
NLP for Testers, a brief introduction

NLP For Testers
- The Meta Model

Alan Richardson

Compendium Developments

www.compendiumdev.co.uk/nlp

This paper will provide a brief introduction to:

• The ‘Meta Model’, a model of psychotherapeutic communication
• The 12 communication violations identified by the ‘Meta Model’
• How testers can use the Meta Model

‘If we spend our time looking for causes instead of structure we may as
well give up the idea of therapy and join the group of worrying

grandmothers who attack their prey with such pointless questions as
“Why did you catch that cold?” “Why have you been so naughty?”’

Fritz Perls,
The Gestalt Approach

© Compendium Developments 2004 1 www.compendiumdev.co.uk/nlp

http://www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

What can the NLP Meta Model do for testers?
“…the goal of the Meta Model is not to find the ‘right’ answers, but rather to
ask better questions – to widen our map of the world rather than to find the
‘right map of the world’. The purpose of the Meta Model inquiry system is to
help identify missing links, unconscious assumptions and reference experiences
that make up the ‘deeper structure’ of our conscious models of the world.”

NLP Encyclopaedia,
Robert Dilts

The process of software development is a process of human communication. Beliefs about software are
communicated as requirements. Software specifications are based on the requirements and are in turn
communicated to programmers. Programmers communicate their beliefs about the software
specifications to the computer in the form of program code.

Each of these communication steps may involve several different people and different communication
media, both written and verbal. Each communication step is subject to ambiguity, and ambiguity can
result in software defects.

The Meta Model provides testers with a simple model of:

• 3 ambiguity generating transformations – deletion, distortion and generalization
• 12 easily identifiable communication violations resulting from the transformations

DeletionDistortion

Generalization

Meta Model

Simple Deletion
Comparative Deletion
Lack of Referential Index
Unspecified Verb

Nominalization
Cause and Effect

Mind Reading
Complex Equivalence

Lost Performative

Universal Quantifier
Modal Operators
Presuppositions

The paper will provide an overview of the NLP Meta Model and explore ways in which knowledge of
the Meta Model can be useful to testers:

• Apply the Meta Model to the communication we receive, identify ambiguity and possible
mistakes early, before being encoded in the system

• Apply the Meta Model to the communication we give to,

o Improve defect reporting
o Help people understand what we aim to do
o Improve development team/test team relationships

• Apply the Meta Model to the system to identify areas of test and as a test derivation aid

o “The docs say the system will always do this, if I can find a situation under which it
doesn’t then...”

o What is presupposed by this dialog? How can I invalidate that presupposition?

• Teach testers an easy, effective and repeatable approach to documentation analysis

• Apply the Meta Model to our beliefs about our environment and provide a framework for
thinking about our context of testing

© Compendium Developments 2004 2 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

What is the NLP Meta Model?

The NLP Meta Model is a system of inquiry to explore areas of communication that are susceptible to
ambiguity.

An introduction

“The Structure of Magic” [SoM1], by Richard Bandler and John Grinder, is a study of the language and
the application of language in therapy of the 1970s. [SoM1] provides a formal model of the language
used, enabling it to be easily understood, taught and used by therapist and non-therapists alike.

The formal model produced, called the Meta Model, was constructed using the theories of
transformational grammar. Under transformational grammar, our communication, what we say and
write, are surface structure representations of a richer model of the world (deep structure). And we map
our deep structure onto the surface structure by a process of transformation.

TransformDeep
Structure

Surface
Structure

Surface
Structure

Deep
Structure

Transform

Communication

[Deletion, Distortion, Generalisation]

NLP Deep/Surface Structure Model

For example, if I tell you that “I bought a computer”. Then the statement “I bought a Computer” is a
surface structure representation of a richer deep structure. The deep structure contains all my memories
of buying a computer, including:

• The strategies I used to decide which computer to buy,
• Memories of all the computers I discarded before choosing the one that I chose,
• How I felt buying the computer,
• How much it cost,
• If I thought it value for money,
• What the shop/salesman was like,
• Where I bought it from,
• What the shop smelt like,
• How I felt carrying the computer home.

All of this information has been deleted in my transformation from the Deep Structure to the surface
structure statement. But all that information is accessible to you if you ask the right questions.

Over time, my computer may crash, have problems with the hardware, and I may come to feel that the
computer wasn’t as good a deal as I thought and I may start saying “I bought a bad computer” and may
start feeling bad about it. At this point I am not only deleting information, about it being the best
computer I could buy at the time, I am distorting my deep structure; and that distortion is having an
effect on my real world interaction. But the deep structure is still accessible, and with the correct
questioning, I may come to realise that “I bought the best computer at the time”, and that “the computer
I bought, now has some problems” which is a different surface structure representation of the same
deep structure and may have a different effect on my outlook.

© Compendium Developments 2004 3 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

The Meta Model categorises the transformations from deep structure to surface structure as deletions,
generalizations and distortions.

Recognition of Distortion, Deletion and Generalization in a communication allows us to apply a high
level analysis to a statement and ask questions to identify:

• What is missing from this communication that might cause problems,
• What is distorted in this communication, and presented, without adequate definition
• What is generalized in this communication and what is implied by that generalization

The Meta Model categories are further divided into 12 elements: nominalization, cause and effect,
mind reading, complex equivalence, lost performative, universal quantifier, modal operator,
presupposition, simple deletion, comparative deletion, referential index and unspecified verbs. Each of
these elements will be discussed and explained later in the paper.

Each of the 12 elements correspond to recognizable language patterns that are found in human
communication and have associated questions that can be asked in order to derive more information
about the deep structure associated with the communication.

DeletionDistortion

Generalization

Meta Model

Simple Deletion
Comparative Deletion
Lack of Referential Index
Unspecified Verb

Nominalization
Cause and Effect

Mind Reading
Complex Equivalence

Lost Performative

Universal Quantifier
Modal Operators
Presuppositions

Categorisation taken from the Appendix of ‘Persuasion Engineering’ [PE95]

Some reasons why all of this is important are:

• Human communication can be ambiguous
• Ambiguity can adversely affect the communication and the communicator
• It is possible to be taught to recognize ambiguity
• It is possible to respond to ambiguity to gain clarification
• Clarification can help both the communicator and the communication
• Software development is a process of human communication

Most software testers will have encountered requirements, which seemed to be understood by everyone
but, which every role in the development process had a different interpretation of. This probably
resulted in software defects, delays, unhappy users, rework and a whole host of follow on problems.

This is not just a problem with requirements; specifications, defect reports, test strategies, in fact all
communication in the software development process can be impacted by ambiguity.

Communication problems in software development are not limited to the artifacts produced and the
‘Chinese whispers’ effect along the software development lifecycle. Many inter-team problems are a
result of communication issues, and a practical knowledge of the Meta Model can help testers
understand and deal with these issues.

This paper primarily concentrates on artifact analysis with the Meta Model because:

• I am not about to train you to be a therapist, because I am not a therapist.
• The use of the Meta Model to deal with human belief systems is well covered in the NLP

literature.
• The application to artifacts and software systems is a novel use of the Meta Model, and easily

applied by Software Testers.

© Compendium Developments 2004 4 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

More information on the Meta Model and Software Testing

Now that I have provided an overview of the Meta Model, I will describe some correspondences with
Software Testing.

In much the same way that testing is an open-ended task, there is always another test that could be run.
The Meta Model is open-ended in that it is a method of inquiry and each application of the Meta Model
elicits another surface structure description of the client’s deep structure. This surface structure
description can then be subjected to another Meta Model inquiry.

Just as we do not test for the sake of testing, the Meta Model is not use to get information for the sake
of information. Testers get information to effect change in the development team’s beliefs about the
system. The Meta Model is used to get information to allow therapists to effect a change in the client.
Testers can ask questions to get information if it seems to them that a transformation has resulted in a
communication that may be ambiguous enough to cause problems of understanding.

When I analyse previous testing projects that I have been on from the point of view of the Meta Model,
I find that much of the testing use I have derived from the Meta Model is associated with
Generalizations and Deletions. I have designed tests specifically to target these two types of
transformations.

Many of the requirements and specification issues that I identify have also associated with
Generalization and Deletion, and I have asked simple Meta Model questions to have them clarified.
This has resulted in the nature of the testing about to be performed changing and helped achieve better
collaboration with other roles involved in the development process.

However, much of the inter-team communication problems have been recognised by distortion.

Note: Each of the Meta Model elements are not wrong or bad. Depending on the
context, they may be highly appropriate and exactly right. They can be sources of
ambiguity, and ambiguity, in software development communication, can be a source of
error.

© Compendium Developments 2004 5 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

Generalization
Exceptio probat regulam in casibus non exceptis

Cree's Dictionary of Latin Quotations,
Anthony Cree, (Newbury, 1978)

Generalization is a process of building new rules or models from parts of an experience.

I have encountered the results of unidentified processes of generalization in software construction as:

• Special cases being introduced as code changes during the testing phases, as the testing
process identified more and more exceptions. This quickly led to chunks of code that were
more complicated to test, prone to failure, and difficult to maintain.

o In this case had the generalization been tackled early then a different implementation
may have been provided which would probably have been less error prone.

• Situations that the system simply could not handle because the architecture was built around
presuppositions that were simply untrue.

o For example a file based system that failed regularly due to file corruption and
contention because of multiple processes accessing the same files, a database
solution would have been a better solution had the presuppositions been identified,
questioned and acted upon.

• Situations that caused the system to crash because the limiting rules, around which the system
was designed, were not enforced.

o Incorrectly formatted files being fed in to the system causing it to crash

I have found generalizations to be one of the most useful areas of the Meta Model to apply to Software
Development communication. We will all have had experiences where flawed generalizations were
unchallenged and carried through to the software itself, and resulted in problems. This section will
explore how to identify and question generalization.

Universal
Quantifier

Modal
Operators

Presuppositions

Generalization

A Limiting
Generalisation

Counter, challenge

Identify exception

"All developers
hate testers"

"I develop and
I don't hate you"

"*ALL* developers?"
"Microsoft have 2 testers
for every developer,
that must be hate city"

Rules
for
limits

Challenge and get more
information on the
limits

"I can't run
these tests""What stops you?"

"I shouldn't
test this.""What would

happen if you did?"

What is unstated
and has to be true
for the statement to
be true Challenge, test

Presuppositions

“…Up until this stage, a grandmaster’s thoughts have been based on general ideas
and strategic principles. Now, at long last, he will start looking for the best next

move. He will establish what moves are possible, and how they fit in with his plan.
Then he will begin analysing many variations. For each of the moves he will examine

he will foresee the opponent’s reply, then his best answer and so on. Only after
finishing this immense task, now purely analytical, will Smyslov move a piece and

stop his clock. Thinking over, move made!”

Think Like a Grandmaster,
Alexander Kotov, 1971

A presupposition is an element in a statement that must be true for the statement to be true.

Presupposition Analysis is one way to develop the skill of looking at a system, working out how it
could go wrong, and then identifying ‘THE test’ to expose the problem

© Compendium Developments 2004 6 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

When I receive a communication from someone. What is presupposed by that person's statement that
has to be true for their statement to be true? Because if any of the presuppositions are not true, then that
may invalidate that person's overall statement, and if the statement is one which is not helpful to their
world view then we can go some way towards helping them explore a new world view, give them
choices and conduct effective therapy.

But this paper deals with Software Development so… What are the presuppositions in the following
requirement?

“The daily trade file must be processed in under 5 seconds when the system starts up”

I have listed some of the presuppositions below, with some of the responses that a tester might have to
those presuppositions:

There is a daily trade file What if it doesn’t exist?
The trade file is generated in some way By what way? Which system?
The trade file is accessible Is it on our environment, where does it reside?

What if the permissions are set wrong?
The trade file can be processed What if it is corrupt?
The trade file is a file What kind of file? Binary, Text?)
The system will start-up on a daily basis What if the system doesn’t start up one day? Does

the trade file get overwritten or something worse?
What if the system starts up more than once?

A fuller analysis of this requirement statement appears in the Appendix ‘An Annotated Meta Model
Example’.

The above requirement is an amalgam of a number of different requirements from past projects. The
ambiguity in similar requirements caused problems in the system implementation because some of the
questions identified were not asked or answered on those projects.

• Presuppositions may be presented as assumptions that are so taken for granted that they don’t
need to be checked. Often they do need to be checked.

• In requirement documents you can often identify unstated requirements by examining the
presuppositions. If the unstated requirements are not picked up early we can be involved in a
project where “the users’ don’t know what they want” and “the requirements keep changing”.

• Presupposition analysis can help identify potential problems early as the analysis results in a
deeper exploration of the problem domain and Presuppositions can be questioned before the
application is built.

• Presuppositions can be the target of challenges in the form of tests.
• Presupposition analysis can help us identify preconditions for tests, and help us to order the

tests. What is presupposed by a test? Check those presuppositions first; we may have not
identified a fundamental test.

Presuppositions are familiar to us when we go through the process of empathising with someone and
trying to figure out why they do the things they do. “What would I have to believe in order to act like
that?”

Finding THE Test

If I am faced with a screen, or a requirement, or a set of functionality in a system, and I start thinking
about the presuppositions associated with that. An approach to testing is to see if I can invalidate any of
those presuppositions.

Miracles in therapy occur when the therapist asks a single question of the client that leads to an
emotional epiphany.

© Compendium Developments 2004 7 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

‘THE Test’, is the Software Testing equivalent. What is the one test you can do to the system that will
make plain a fundamental error of the implementation? In one sense Tests are just questions that we
ask the system.

We can generate 2nd, 3rd, 4th, …, order presuppositions by subjecting our presuppositions, and the
questions we ask of those presuppositions, to presupposition analysis. The quote from Kotov [AK71] at
the head of this section illustrates the process of bifurcating presupposition analysis well.

By working along a chain of presuppositions and questions we arise at a presupposition at a more
fundamental level, and if that presupposition fails our question then we are more likely to find a test
that breaks the system. This is one way that experienced exploratory testers are able to sit down at a
system and break it very quickly and very visibly.

Example:

“The daily trade file must be processed in under 5 seconds when the system starts up”

• 1st order presupposition: “The daily trade file must exist”,
• Question: “What does the file contain?” Answer: “information that can be processed”
• 2nd order presupposition “the contents are valid”
• Question: “What happens if I invalidate the contents?” – I’ll test that

An example of how to use this presupposition for testing can be found in the testing literature: James
Whittaker’s ‘How to Break Software’ [JW03] in ‘Chapter 4: Testing from the File System Interface’.
‘Attack 6: Vary or corrupt file contents’.

The notion of presuppositions can be used on GUI systems too.

When faced with a screen, what has to be true for this screen to be true?

• If the screen is a list of items then
• The item displayed exists

o What if it doesn't?
� Can we create a state in the system where we display the list, but delete

an underlying record displayed in the list, then try and open that record?
• The item displayed must have those details

o What if it doesn't? What if it has been changed elsewhere?
� Can we create a state in the system where we change the underlying

record details, then try and open the record in the list? Are the
underlying details displayed, or are the details in the list displayed?

Testers may learn to do this as they become experienced with testing. Sometimes experienced testers
have the appearance of following this process, but apply the test because they have encountered the
defect before, rather than because they are thinking through the presuppositions. For me, learning
'presupposition analysis' has allowed me to approach exploratory testing more consciously, practice it,
use it more often, and get more benefit from it.

Universal Quantifier

(All, Never, Every) M : 1 (Just that, Only)

 “They never listen to me”, “He always puts me down”. In a therapeutic context, these statements can
lead to the client having limited beliefs about their world, which the therapist can challenge and expand
the range of possibilities open to the client.

When universally quantified statements are present in software documentation “The system will
always…” “The system will never…” then this leads to a number of obvious thoughts that the tester
can consider:

• These kinds of statements are crying out for a counter example. The statement may be a
limiting belief about the software that should be challenged early in the project, to ensure that
the exceptions have been considered.

© Compendium Developments 2004 8 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

• Specifically constructing tests to try and identify any exceptions to the statement, exceptions
that would then be classed as defects.

• The tester may need to consider a test data strategy based on combinatorial test data
generation techniques (orthogonal arrays, allpairs) to provide comprehensive data sets to test
against.

• Boundary Value Analysis, or more specifically, Domain Based Test techniques can be used in
this situation. We may well be dealing with an infinite domain, or we may be dealing with a
domain that hasn’t specified the boundaries.

Part of Test Process Improvement involves examining our beliefs about the Software Test process and
identifying which beliefs are useful and which are not. I have seen situations where a test process has
reached a high level of maturity with rigorously defined processes and strict rules about how testing
must be conducted.

Effective TPI deals with appropriateness. And it is useful to examine the Universally Quantified rules
in a test process to see how universal they actually are.

• “Never let software testers see the source code”
• “Never let the same person that coded it, test it”
• “Always write a test script before running a test”
• “All tests must be cross referenced to requirements”

We may discover that we cannot readily justify these statements on all our projects and that our process
of TPI has gone a step to far and generated generalizations rather than increased our ability to do more
effective testing.

Apply the Meta Model to the statements that are documented in your test process or strategy, and to the
statements you make that represent your beliefs about software testing. Do any of those statements
suffer from a generalization transformation?

Modal Operators

Should, Must, Could, Need, Might

When dealing with people, modal operators can be used as motivators for change. We can achieve
different results in communication by changing the modal operator in a statement: “I must wash the
dishes”, “I should wash the dishes”, “I could wash the dishes”, “I need to wash the dishes.” Try it out
for yourself, some statements motivate you to do it, others have presuppositions of choice and you
might choose to ignore it and put it off, others might build feelings of resistance due to the language
used.

In requirement documents there are modal operators of possibility that can add ambiguity. {Might,
May, Often} “The system might need to reset itself” Under what circumstances? Does it Always do it
under those circumstances or just sometimes? Is it random?

Being aware of the modal operator when reviewing documentation allows us to ask specific questions
to quantify requirements when necessary to remove ambiguity.

Note: Use of the Meta Model does not have to be done in a way that bludgeons
the people you work with an endless series of questions.

• Skilled Testers have to be able to work with some level of ambiguity and

missing information.
• Skilled testers analyse what they know and learn to identify if the current

level of ambiguity in their model is acceptable, and then assess and report
on the level of risk posed by that ambiguity.

• Sometimes questions may not be answered, and testing may have to
continue anyway.

Fortunately, testers can pose their questions as tests and ask the system.

© Compendium Developments 2004 9 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

Deletions

Simple
Deletion

Comparative
Deletion

Lack of
Referential
Index

Unspecified
Verb

Deletion

Element
missing from
surface
structure

Recover
Deleted
Information

"The system is
going to fail"

"fail how?"
"Which
system?"

Missing
Reference
PointIdentify

Comparison

"This system
is rubbish"

"Compared
to What?"

Unspecified
Noun Recover

Noun

"They have a
poor process"
"Who are
they?"

Missing
Process
Details

Recover
Missing
Process

"I'm testing"

"How are
you testing?"

"What kind of
testing are you
doing?"

At the end of an information gathering interview or meeting I often ask a question similar to: “Is there
anything that you not told me, that my not knowing, will prevent me from being able to do what I need
to do to help you?”

I have long forgotten the original source where I learned of this question, and subsequently cannot
attribute it for your future study. But I have found it enormously useful when consulting, and the
question relies on the identification of deletions for its impact. By asking this question I am searching
for deletions outside of the scope of what I was able to identify from the responses in an interview.

Have you ever encountered a situation where you didn’t test an area of the system because you didn’t
know anything about it? Deletions can cause major problems in the software process.

Simple Deletion

A Simple Deletion is information that is missing from a statement. Information that would complete
the statement and remove ambiguity.

“I’m tired”. We could make assumptions about what the speaker is tired of; they may have previously
said they were tired about their job and we could assume that that is what they mean. They may only be
tired of a specific aspect of their work and in fact may love their job. So we target the deletion to get
more information. “Tired of what?” “Well, I did a lot of DIY yesterday, I’m glad to be back at work so
I don’t have to paint any more.”

“The input file is received via email” has an obvious deletion, “received from whom?”

There are slightly more subtle deletions in the statement “Sent to whom?”, “received when?” and there
are a whole set of deletions about the input file:

• What format is the file?
• What size is the file?
• What does the file contain?

The hardest deletions to spot, and the ones that give most problems, are those that have no indication of
their existence in the surface structure statements. That is why the question at the start of this section
“Is there anything you have not told me…” is so powerful.

We can sometimes spot these deletions by building a model of the system that we build from all the
questions that we ask . And then applying the Meta Model questions to our model. It may be that only
by putting together all the surface structure statements that we can identify a deletion that will cause a

© Compendium Developments 2004 10 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

more fundamental problem. Some deletions may be identified through a process of presupposition
analysis.

Comparative Deletion

“You’re Finding too many bugs”
“You’re not finding enough bugs” } Compared to Who?

Compared to What?

A Comparative Deletion occurs when the reference source is not defined. When a statement containing
a comparative deletion is communicated, the statement may be received as a value judgement instead
of a comparison and can be a source of dispute.

Sometimes things are held up to comparison in such a way that only the negatives are noticed and that
none of the superior attributes are acknowledged. This can be seen on development projects when
comparisons are made to estimates given at the start of the project and then used to bludgeon staff with
later in the project.

• “You haven’t run enough test cases.”
• Compared to what?
• “This estimate”,
• Ah, the estimate we produced before knew what we were doing and before we new the real

scope of the task. Hmm, it may be time to revisit that estimate.

“The system is running too slowly.” Compared to what? Possibly compared to what the user needs.
The deletion may reveal a previously unidentified requirement.

Lack of Referential Index

A Referential Index is an object referred to in a statement. The lack of a referential index occurs when
the object is replaced by: It, They, Them, We, Us, That.

The question in response to a missing referential index is to identify the object that is referred to.

“The Users will want to do this.” Deletes information about which users specifically will want to do
this. The notion of Roles and different types of users can be very important during testing to help
identify risk associated with activities and generate test scenarios.

Unspecified Verb

An unspecified verb refers to a statement with a verb that has limited information about how the verb is
carried out. “The system will process this”, process it how?

Lack of information about verbs can cause problems when testing, if assumptions are made about the
deleted information.

© Compendium Developments 2004 11 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

Distortion
Distortions are a common source of assumptions.

Have you ever worked on a system where some functions were added because the software
development team used Mind Reading to generate requirements? Because the developers knew what
the users needed.

Distortion can be a source of inter-team conflict and as a manager it can be useful to identify
distortions in the communication of your staff when they talk about teams that they are having
problems with.

Nominalization
Cause
and
Effect

Mind
Reading

Complex
Equivalence

Lost
PerformativeDistortion

Process
as noun Convert noun

to process

"I'm going
to test" "What kind of

testing are you
going to do?"

X
Causes
Y

Stimulus
& Response

More information
about the causality

"Bad specifications
 make me angry"

"How specifically
does a bad
specification make
you angry?"

Claim to
knowledge Identify source

of claim

"They hate
testers" "How do you

Know?"

2 unrelated
statements
represented
as equivalent

Check
validity
of
equivalence

"They don't know how to
develop software,
the requirements are never
signed off."

"If the requirements
were signed off
does that mean they
would know how to
develop software?"

A Value
Judgement

Identify Source

Identify Criteria

"It is wrong
to test without
writing test
scripts" "According to

Whom?"

Nominalization

“Testers don’t get any respect”

Nominalization refers to converting a verb into a noun.

Respect is a process. We may talk about having respect for someone, but that doesn’t really mean
anything. We may demonstrate that we respect someone by asking him or her to comment on our
strategy. How do you demonstrate that you respect someone?

Software Development is full of nominalizations, in fact ‘Software Development’ is a nominalization,
and we distort all the activities and roles involved in the process of developing software when we
nominalize it.

A Nominalization can be an assumption on the part of the communicator that the other person has the
same view of the process that they do, it may also be a cover up for a lack of knowledge about that
process.

A nominalization is challenged by converting the noun into a verb and asking for more information
“How do you know when someone does, or does not, engage in the process of respecting you?”

Lost Performative

“This system sucks”

© Compendium Developments 2004 12 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

Who says? According to Whom? Where did you hear that?

A lost performative refers to the missing authority from a statement. Who is it that is saying this
statement, or who originally said it..

When dealing with people, we may want to know if this is a self-generated part of their model or an
outside influence. If it is an outside influence then it could be countered with a conflicting statement of
someone equally authoritative; but maybe neither authority’s statement is true. If it is an internally
influenced statement then we can trace the chain of belief and offer an alternative view (if this structure
is not helpful).

A Lost performative may lead on to Mind Reading:

• “The system really must do this”
• Who says?
• “The users do”
• Where did they say this?
• “Look I just know OK.”

Mind Reading

“The development team don’t respect us testers” } “How do you know?”

Mind reading is any claim to knowledge where the source is unknown.

In verbal communication, mind reading can lead to assumptions which create unproductive beliefs
about the situation, when the situation may not really be like the communication.

In written documentation, particularly requirements documentation, mind reading can lead to
assumptions of authority. One justification for test processes insisting on cross-referencing tests back to
requirements is to demonstrate an authoritative source for those tests.

Unsubstantiated statements might mean that the requirements analyst has put words in to the mouth of
the user and we may have extra functionality and requirements that are not strictly required and may
detract the development team from producing the requirements that are necessary.

Testers should be wary about applying Mind Reading to the systems they test:

• “Great the record got saved. On to the next test.”
• How do you know the record got saved?
• “Well, the progress bar showing it was being saved was displayed.”
• Have you looked in the database?
• “Well, no but…”

Sometimes we know something has happened but we don’t actually have an authoritative source for
that information. When we identify Mind Reading, we question the communication to identify a
source.

Cause and Effect
Cause and effect is a chaining together of statements, leading to some evidence for a generalized
conclusion. An X causes Y statement.

“I saved a file and the system crashed”

A cause and effect statement may need to be questioned to get more information on exactly How X
causes Y, as we question this we may identify a series of deletions in one of the follow on surface
structures.

Cause and effect brings to mind the Stimulus and Response theories from behaviourism [JW66].

© Compendium Developments 2004 13 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

By thinking in behaviouristic terms we can question the conditioning associated with the stimulus and
the response.

Behaviourists experimented with conditioning a subject so that the stimulus would trigger a different
response. So with that in mind we can ask questions of a Cause and Effect statement to check this:

• Does X always cause Y?
o We might try to use the process of testing to try and condition the system into

generating a different response from the same stimulus.
o What environmental factors might affect this stimulus or this response?

• Are there any situations where X doesn’t cause Y?
• Is the response only triggered by that stimulus or are there other ways to achieve that

response?

Behaviourists also experimented with conditioning by over exposure. Is it possible to continually
trigger stimulus X until the response does not happen? In computer systems this may be the result of a
memory leak for example, or overload of the system in a denial of service attack.

Complex Equivalence
“The development team don’t respect us testers, they never give us signed off design documents early
enough to write our test scripts.”

Complex Equivalence is a causal model that results in a conclusion. The statements that make up a
complex equivalence are often not joined with a specific conjunction (and, but, because), but are
presented in sequence with an implied conjunction. E.g. “They don’t know what they are doing, the
requirements are never signed off.” We can suspect that there may be an equivalence between those
two statements in the speaker’s model. And we can question it by testing the equivalence. “So if the
requirements were signed off, that would mean that they know what they are doing?”

A source of problems in communication can result when the equivalences aren’t valid.

Testers should watch for complex equivalences in their defect reports as it is very easy to cause conflict
with the development team if the equivalence conclusion is not one that is shared by developers.

“The system crashes every time I open a file, the file load routine is broken”. Well, maybe it isn’t, all
we can say for sure is that the system has crashed each of the different ways you tried to have it open
specific files. And we can document those ways to help the person acting on the report recreate and fix
the problem.

A perfect way to create conflict in a software development team is to use cause and effect in your
defect reports and document a generalized conclusion statement that is not shared by the development
team. If you really want to annoy them try “The system crashes every time I open a file, the file load
routine is broken because you are lousy developers”.

© Compendium Developments 2004 14 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

Reflections on the Meta Model for Software Testing
“…our Meta-Model does not, by any means, exhaust the choices or

possibilities of what a therapist might do in the therapeutic encounter.
Rather, it is designed to be integrated with the techniques and methods in

already established fields of psychotherapy. The integration of the explicit
Meta-model with the techniques and methods of therapy in which you are

already skilled will not only expand the choices you have as a therapist, but
it will increase the potency of your style of therapy by making the

interventions you use directed explicitly at expanding your client’s model of
the world.”

The Structure of Magic, Volume 1, page 157

Having gone through each of the Meta Model elements I am now going to reflect on the Meta Model
and software testing in general.

Software Testing As A Questioning Model
Software Testing can be viewed as asking questions of the system under test.

How does an effective therapist to know what question to ask next of the client? How does an effective
Software tester know what test to carry out?

A therapist that knows the Meta Model can listen to their client’s surface structure statements and use
the framework provided by the Meta Model to ask a question based on the identified semantic
illformedness in their client’s statement. The Therapist takes all these responses and builds a model of
their client’s model of the world, and to this they apply their techniques and conduct therapy.

The tester does a similar thing. All testers build models of the system. Exploratory testers build a model
as they use the system; their use of questions helps them learn more about the system in order to ask
even more questions of it.

One of the techniques I used to use often when viewing documentation, but less so now, was to view it
with a very simple questioning model: “Why? Where? When? What? How? Who?” This is a very
generic model and it is often possible to ask all 6 questions against any statement in the requirements
document. The effective use of these questions relied on my experience and understanding – otherwise
I could spend a lot of time asking questions that don’t add much to my accumulated understanding of
the system.

The Meta Model is a more directed model and provides a more focussed set of questions to ask within
the context of a specific statement. Based on the semantic illformedness in a given communication, we
have specific questions that we can ask.

Skilled usage of the Meta Model depends on identifying when to ask one question above others - to
know which semantic illformedness to follow up. Sometimes we may want to expose a generalization
and reveal an ambiguity so that the communicators take the document away and reformulate the
communication. Perhaps we want to get more information in order to provide a counter example?

A key skill for testers is the ability to answer, “What is going to go wrong with this system?” The best,
and easiest way I know of explaining this skill, so that people can practise and develop it, is by
exploring the Meta Model structure of ‘presuppositions’.

Warning, Rapport Buster, Assumptions are not presuppositions

Sometimes when faced with a Meta Model element. We ask questions that are not associated with the
surface structure presented, there is nothing wrong with this, the questions are suggestions, and we are
pursuing information, so if we identify information we want, we should go after it. But the Meta Model
is not a mechanism for building rapport between speakers and if used injudiously can lead to
communication complications. As can non-Meta Model communication. But with knowledge of the

© Compendium Developments 2004 15 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

Meta Model you might have a better chance of figuring out how you got a specific response to your
communication.

 E.g. faced with the statement

“It is wrong to test without writing test scripts,”

A questioner might fill in a presupposed deletion (‘first’) and expand on the unspecified verb

“It is wrong to <perform test execution> without writing test scripts <first>.”

Then tackle the modal operator ‘first’ with the question

“What would happen if you did?”

Now if the questioner has filled in the gaps with the correct assumptions then they have managed to
jump ahead in the Meta Model questioning.

If they got the wrong assumptions, or the speaker wasn’t ready to have their model of the world
questioned so quickly, a statement of resistance might be forthcoming.

“Look, its just wrong, I can’t believe you’re even asking, I thought you knew what you were doing!”

At which point the questioner might want to drop their assumptions and target the surface structure
violation presented (Mind Reading).

“Yeah, you’re probably right, I just wondered where you got that rule from?”

Make Conscious What we do
“…to talk about it contemptuously as ‘obvious.’ This is where they make
their biggest mistake.” Fritz Perls

In some sense, the Meta Model is commonsense and some testers may look at the Meta Model and say
“I do all this anyway” as they recognise that they have previously asked some of the questions
documented by the Meta Model.

“This is all stuff I know.”
“This is all stuff I do as a tester } Do you apply it consciously?

Could you teach me to do it?

The benefit of learning the Meta Model is that we can have a greater understanding of what prompts us
to ask certain questions. We can return to the model when under pressure to remind ourselves of
possible questions we can ask.

And we will undoubtedly ask more questions than those prompted by the Meta Model.

• How many of the questions we ask are prompted by what we learn directly from the system?
• How many are prompted by our model of the system?
• How many are prompted by our model of this type of software?
• How may are prompted by our model of software in general?

We will ask questions about the relationships between things, motivations for doing things, ways of
doing things. How else, are we identifying what questions to ask of the system?

Asking these questions is a useful technique for exploring our own personal approach to testing.

The Meta Model: by naming and describing certain violations, by giving specific
questions, by giving ways of practising these questions and identifying when to ask
them, allows you to apply these processes more consciously, and enables you to
explain what you do.

© Compendium Developments 2004 16 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

By specifically learning the Meta Model we can gain more control over what we do as testers, to have
more conscious awareness of how we choose to do certain types of tests and how we know to ask
certain questions.

We can also more easily explain to others what prompted us to ask certain types of questions and can
minimise the communication that we make to others which can cause resistance.

“Exceptio probat regulam in casibus non exceptis” can be translated as “The
exception affirms the rule in cases not excepted”. e.g. “Free Parking on Sundays”
allows us to conclude that the rule is that “Parking is not free, except on Sundays”.

Generalizations are presented as statements of truth or rules. The Meta Model
statements used as responses to identified generalizations are challenges to that truth:

• Universal Quantifiers:. identify unstated exceptions, this may lead to the rule being
changed if the exception domain is too large.
• Presuppositions: examine the unstated parts of the rule which are not excepted
• Modal Operators: examine the stated exceptions to the rule and determining their
validity.

Communication we give and receive

Meta Model
Analysis

Test
Documentation

Test
Approach

Defect
Reports

Progress
Reports

Clear
Communication

Meta
Model

Analysis

Requirements

Development
Documentation

Verbal Communication

Queries

Queries

Queries

Model of
the System

Meta
Model

Analysis
Testing

Tests

Apply the Meta Model to our own work and
communicate clearly

Build a clearer model, and question the system, by
applying the Meta Model

We can gain some control over the interactions we have with others. We cannot control the people we
deal with, and it may at times seem that we cannot control the systems we test. But we can control how
we react to the communication we receive, we can control how we provide information to people.

The Meta Model deals with structure of communication. It deals with how a model of the world is
constructed, not why.

Software Testing deals with How.

When we write a defect report and investigate the circumstances of a defect we are looking at how the
defect occurred and what evidence we have to support it. We are not looking at why the defect
occurred. Communicating in terms or how instead of why will change the language we use to write
defect reports. If we introduce Whys into the defect report we risk alienating the reader by providing an
explanation that they do not agree with. Filtering defect reports through the Meta Model can help
improve the communication of those defects.

© Compendium Developments 2004 17 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

How, not Why

In the Meta Model questions there were no ‘Why?’ questions. Fritz Perls, and Virginia
Satir have commented on ‘Why?’ questions thus:

Fritz Perls: “’Why’ opens up an endless series of questions which can only be
answered by a first cause that is self-caused…If our patient learns the how … he can
work through his interruptions into his real self and the activities he wants to carry
out”.

The Gestalt Approach, page 54

Virginia Satir: “People can ask ‘how’ questions instead of ‘why’ questions. Generally
speaking, ‘how’ questions lead to information and understanding, and ‘whys’ imply
blame and so produce defensiveness. Anything contributing to defensiveness
contributes to low pot and leads to potentially unsatisfying outcomes.”

The New PeopleMaking, page 136

Fritz Perls: “There is, however, one way of asking questions – used by most orthodox
therapists – which seems to me of little therapeutic value. These are the questions
starting with ‘Why?’…The ‘why’ questions produce only pat answers, defensiveness,
rationalizations, excuses, and the delusion that an event can be explained by a single
cause. The why does not discriminate purpose, origin, or background. Under the mask
of inquiry it has contributed perhaps more to human confusion than any other single
word. Not so with the ‘how.’ The how inquires into the structure of an event, and once
the structure is clear all the whys are automatically answered.”

The Gestalt Approach, page 77

How many ‘Why?’ questions have you asked in the course of your testing career? Did
any of them result in a negative response? Why isn’t necessarily a bad question to ask,
but sometimes we ask, or talk about, ‘Why?’ When we really mean ‘How?’

Simple to Apply

"The daily trade file must be processed in under 5 seconds when the system starts up"

LP

SD (1) MO UV (1) SD (3) SD (4) UV (2)SD (2)

 Effect Cause
CE

An example requirement annotated using the Meta Model

When reading requirements documentation, I make notes on the requirement documentation and build
adhoc summary diagrams. I apply the Meta Model when I go through the document by annotating the
document with abbreviations for the Meta Model elements [LP(Lost Performative), RI(Referential
Index), D (Deletion), etc.]

I prefer to go through a requirement document several times, and each time I can identify whether my
concerns about a Lost Performative are justified (my question may have been answered later in the
document). Using the Meta Model results in my reading through requirement documentation faster and
producing less long hand notes to represent my concerns.

There is an overlap between the questions in the Meta Mode. When presented with a single statement;
there are usually a number of Meta Model questions that are applicable. In order to identify which
question is suitable, we have to have in mind the kind of information that we want to obtain. Much like
testing, in order to decide what test we want to run, we have to know what we want to know about the
system.

There is also overlap between each of the Meta Model elements and arguments can be made for putting
them in different classifications e.g. Complex Equivalence could be classified as Deletion if we were to

© Compendium Developments 2004 18 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

focus on the equivalence as being deleted from the statement. As you examine the Meta Model
elements in more detail you will identify which ones can be placed in different categorisations.

What is important is not the Classification but the impetus behind asking the Meta Model question, i.e.
when we identify a Meta Model element what is the information that we want to get from asking the
question.

Learn by reading Transcripts
Read transcripts of therapy sessions and apply the Meta Model to those, if you want to understand how
the language of therapy works.

But this also applies to the reading of transcripts of testing. Look at your own testing. How did you
know to ask that question of the software?

If a question that you asked of software didn’t return, what you thought was, any useful information
then ask yourself was there any question that would have given you useful information? How would
you have known to ask that question? What useful information did you want to get?

Psychology is littered with transcripts. Software Testing is less so. But examine “How to Break
Software” probably the closest book that software testing has to a set of transcripts and analyse it. How
did they know to ask that question? What would it have taken for you to ask that question? How will
you know to ask that question when you are testing?

Learn by Doing
“You can’t develop a better appreciation of the art merely by reading a book about
it. If you want to understand music better, you can do nothing more important than
listen to it…All of us, professionals and nonprofessionals, are forever trying to
deepen our understanding of the art. Reading a book may sometimes help us. But
nothing can replace the prime consideration – listening to music itself”

Aaron Copland,
What to Listen for in Music

2nd Edition, 1957, McGraw-Hill

Learning the Meta Model is done through application. And since the Meta Model is related to
language, all we have to do is listen to people and identify aspects of the Meta Model which apply to
their communication. Do this in stages, choose an element, and listen out for it for a day. Listening to
the radio, the television or the people you come in contact with.

It is even easier to practise on documentation. You can do it at your own speed:

• Take a document
• Start marking out the Meta Model elements that you find.

o Ask yourself:
� Does this contribute to ambiguity in the document?
� Could this ambiguity lead to problems?
� What question can you ask to get more information and remove the

ambiguity?
� What tests could you run in the system to check for problems relating to the

ambiguity?

The Meta Model is not hard to learn to apply. We apply the Meta Model by taking the statements that
are communicated to us literally. Where there is ambiguity we can use as many different interpretations
of that ambiguity as possible, if they conflict then it is highly likely that, by chasing the ambiguity, we
will identify defects.

© Compendium Developments 2004 19 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

References

[SoM1] The Structure of Magic, Volume 1, Richard Bandler & John Grinder, Science and Behaviour
books, 1975

[PE95] Persuasion Engineering, Richard Bandler and John LaValle, Meta Publications, 1995

[RD1] NLP Encyclopaedia, Robert Dilts, http://www.nlpuniversitypress.com/

[AK71] Think Like a Grandmaster, Alexander Kotov, Batsford, 1971

[FP1] The Gestalt Approach & Eye-Witness to Therapy, Fritz Perls, Bantam, 1976

[JW66] John B. Watson, Behaviourism, The University of Chicago Press, 1966

I was taught 2nd, 3rd, 4th order presupposition analysis by Eric Robbie and portions of ‘Finding THE
Test’ are adapted from his ‘The One Question Exercise’.

Then he shook the rug!
CRACK!

Now the bed had the spot!
And all I could say was,

“Now what, Cat?
NOW What?”

The Cat in the Hat Comes Back,

Dr Seuss

© Compendium Developments 2004 20 www.compendiumdev.co.uk/nlp

http://www.nlpuniversitypress.com/

NLP for Testers, a brief introduction

Appendices

The following appendices are designed to be printed out for easy reference outside the context of this
paper.

• An Annotated Example
o Expands upon the presuppositions, and meta model elements examples presented

earlier. This shows the depth of ambiguity present in a simple statement and the
range of testing that can be performed.

• Meta Model Summary

o The Meta Model Mind Map from the paper with a table summary of the meta model
elements.

• Meta Model Summary Diagrams

o All 3 Meta Model Summary Mind Maps from the paper on a single.

© Compendium Developments 2004 21 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

An Annotated Meta Model Example

“The daily trade file must be processed in under 5 seconds when the system starts up”

Meta Model Elements

"The daily trade file must be processed in under 5 seconds when the system starts up"

LP

SD (1) MO UV (1) SD (3) SD (4) UV (2)SD (2)

 Effect Cause
CE

LP Lost
Performative

MO Modal
Operator

UV Unspecified
Verb

SD Simple
Deletion

CE Cause Effect

LP Who says “The daily trade file must…”?
SD(1) Containing what?

From where?
Called what?
Stored where?

MO What if it isn’t?
UV (1) Processed How specifically?
SD (2) Processed by what? It might be a mistake to assume it is

the same system that starts up.
SD (3) Where did this number come from?

How Much under 5 seconds?
SD (4) Which system?
UV (2) Starts how?

Starts When?
CE Processed only when the system starts up?

Never processed at any other time?
Processed by any other systems?
So if the system didn’t start it wouldn’t be processed?

1. Identify the Meta Model Elements
2. What questions can we ask?
3. Identify the presuppositions
4. What do they lead to?
5. Ask the questions early
6. Use the questions as test conditions
7. Use the questions to guide your exploratory

testing

Presuppositions

Presupposition Leads to…
There is a daily trade file what if it doesn’t exist?
The trade file is generated in some way by what system?
The trade file is accessible is it on our environment, where does it reside?

What if the permissions are set wrong?
The trade file can be processed What if it is corrupt? Locked? Too Big?
The trade file is a file What kind of file? Binary, Text?)
The system will start-up on a daily basis What if the system doesn’t start up one day, does the

trade file get overwritten or something worse?
What if the system starts up more than once?

There is only one daily trade file
The system can process a trade file in under 5 seconds What if it is too big?

What if the transactions are very complicated?
There are knock on effects if the file is not processed in under ‘5’
seconds : ‘must’

What happens if it doesn’t?

The daily trade file only contains trades for a day? What does the File contain?
What does a trade look like?
What is a trade?
What kinds of trades?

The system knows how to find the file Is the location hard coded?
Is the location passed as a parameter?
Is the location in a config file?

The trade file has a specific name format Is it always named the same thing?
The daily transaction file has transactions in it What if the file is empty?
The daily transaction file is produced daily Produced by what system?

Produced when?
The daily transaction file is generated before our system starts up What if the system starts up as the file is being

generated?
The system is closed down at some point (in order to start up again) What if the system is not closed down?

© Compendium Developments 2004 22 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

Meta Model Summary

DeletionDistortion

Generalization

Meta Model

Simple Deletion
Comparative Deletion
Lack of Referential Index
Unspecified Verb

Nominalization
Cause and Effect

Mind Reading
Complex Equivalence

Lost Performative

Universal Quantifier
Modal Operators
Presuppositions

Meta Model Element Examples Questions
Nominalization
(N)

A process represented as a noun

“The Software Testing is
inadequate”

“Testers don’t get any respect”

Convert object to a process

“What is involved in your software testing?”
“How do you know you are not respected?”

Cause & Effect
(CE)

X Causes Y
Stimulus and response

“Late delivery of software makes
me angry”

Identify missing information associated with the
causality

“How specifically does it make you angry?”
“Does it always make you angry?”

Mind Reading
(MR)

Claim to knowledge (often about
someone else’s internal state)

“They hate testers” Identify source of claim

“How do you know?”

Complex Equivalence
(EQ)

2 statements represented as
equivalent

“They really don’t know how to
develop software, the requirements
are never signed off.”

Check validity of the equivalence

“So if the requirements were signed off, that
would mean that they knew how to develop
software? Is that all it takes?”

Lost Performative
(LP)

A value judgment with a missing
judge and criteria.

“It is wrong to test without writing
Test Scripts first”

Identify Source and criteria

“Who says?”, “According to whom?”

Simple Deletion
(SD)

Element missing from surface
structure.

“This system is going to fail” Recover deleted information.

“Fail how?”, “which system?”

Comparative Deletion
(CD)

Missing reference point.

“This system is the worst”
“This system is rubbish”

Identify the unstated comparison.

“Compared to what?”

Lack of Referential Index
(RI)

Noun not specified

“They have a poor process” Identify the unstated reference.

“Who are they?”

Unspecified Verb
(UV)

Missing process details

“They want me to test this” Identify & expand the unstated verb

“How specifically do they want you to test this?”

Universal Quantifier
(UQ)

A Generalization

“Nobody will ever do that”

Find a counter example to counter a limiting
generalization

“I just did it”

Modal Operator
(MO)

Rules for limits

“We must add this requirement
now”

“I can’t run these tests”

Explore the rule

“What would happen if you didn’t add that
requirement now?”
“What stops you running these tests?”

Presupposition
(P)

What has to be true for this statement
to be true?

“If they know how much work
unsigned-off requirements caused
us they would make sure they were
all signed.”

Challenge presuppositions and test our analysis

“How do you know they don’t know?”

Table: Meta Model Elements, examples, questions and objectives

© Compendium Developments 2004 23 www.compendiumdev.co.uk/nlp

NLP for Testers, a brief introduction

© Compendium Developments 2004 24 www.compendiumdev.co.uk/nlp

Meta Model Summary Diagrams

Universal
Quantifier

Modal
Operators

Presuppositions

Generalization

A Limiting
Generalisation

Counter, challenge

Identify exception

"All developers
hate testers"

"I develop and
I don't hate you"

"*ALL* developers?"
"Microsoft have 2 testers
for every developer,
that must be hate city"

Rules
for
limits

Challenge and get more
information on the
limits

"I can't run
these tests""What stops you?"

"I shouldn't
test this.""What would

happen if you did?"

What is unstated
and has to be true
for the statement to
be true Challenge, test

Simple
Deletion

Comparative
Deletion

Lack of
Referential
Index

Unspecified
Verb

Deletion

Element
missing from
surface
structure

Recover
Deleted
Information

"The system is
going to fail"

"fail how?"
"Which
system?"

Missing
Reference
PointIdentify

Comparison

"This system
is rubbish"

"Compared
to What?"

Unspecified
Noun Recover

Noun

"They have a
poor process"
"Who are
they?"

Missing
Process
Details

Recover
Missing
Process

"I'm testing"

"How are
you testing?"

"What kind of
testing are you
doing?"

Nominalization
Cause
and
Effect

Mind
Reading

Complex
Equivalence

Lost
PerformativeDistortion

Process
as noun Convert noun

to process

"I'm going
to test" "What kind of

testing are you
going to do?"

X
Causes
Y

Stimulus
& Response

More information
about the causality

"Bad specifications
 make me angry"

"How specifically
does a bad
specification make
you angry?"

Claim to
knowledge Identify source

of claim

"They hate
testers" "How do you

Know?"

2 unrelated
statements
represented
as equivalent

Check
validity
of
equivalence

"They don't know how to
develop software,
the requirements are never
signed off."

"If the requirements
were signed off
does that mean they
would know how to
develop software?"

A Value
Judgement

Identify Source

Identify Criteria

"It is wrong
to test without
writing test
scripts" "According to

Whom?"

	NLP For Testers
	- The Meta Model
	What can the NLP Meta Model do for testers?
	What is the NLP Meta Model?
	An introduction
	More information on the Meta Model and Software Testing
	Generalization
	Presuppositions
	Finding THE Test

	Universal Quantifier
	Modal Operators

	Deletions
	Simple Deletion
	Comparative Deletion
	Lack of Referential Index
	Unspecified Verb

	Distortion
	Nominalization
	Lost Performative
	Mind Reading
	Cause and Effect
	Complex Equivalence

	Reflections on the Meta Model for Software Testing
	Software Testing As A Questioning Model
	
	
	
	
	
	“It is wrong to test without writing test scripts

	Make Conscious What we do
	Communication we give and receive
	
	
	
	
	How, not Why

	Simple to Apply
	Learn by reading Transcripts
	Learn by Doing

	References
	Appendices
	An Annotated Meta Model Example
	Meta Model Elements
	Presuppositions

	Meta Model Summary
	
	Stimulus and response
	Identify source of claim
	Noun not specified
	Missing process details
	Identify & expand the unstated verb
	A Generalization
	Find a counter example to counter a limiting generalization
	Rules for limits
	Explore the rule

	Meta Model Summary Diagrams

