
Be a Better Tester,
Be a Beta Tester

Alan Richardson

I’m a professional tester. That’s what I do to earn a living. And in my spare time I keep testing, I
download software and I test it. I get a lot of benefit from doing this and I enjoy doing it, and in this
paper I’m going to explain why I do it, why I enjoy it, why it is fulfilling & exciting, and what benefits
I get from it.

I’m also going to look at the practicalities of beta testing. What tools you can use, what you have to do
to look after your test environment, how to find software to beta test, in fact everything you need to get
started as a beta tester.

And before you run off thinking, “yeah, but I’m never going to do that, there is no point me reading
this.” I’m going to tell you right now, that everything that I cover here can have an impact on your
normal testing regime and can be used to improve your daily testing situation.

I’ll let you into a secret right now, I was saving this until later, but…hey, you deserve to know… I beta
test because it helps me in my testing career. That’s the main benefit, everything else is a bonus, and
there are lots of bonuses, believe me, and I’ll cover them later in this paper, but fundamentally I beta
test because it helps make me a better tester.

Alan Richardson
Compendium Developments
alan@compendiumdev.co.uk

http://www.compendiumdev.co.uk

www.compendiumdev.co.uk 1 © Compendium Developments 2003

mailto:alan@compendiumdev.co.uk
http://www.compendiumdev.co.uk/

1 Introduction .. 3

1.1 On Practising and Learning ...3
1.1.1 Are you in a rut? ...3

1.2 Why should you beta test?...4
1.2.1 Objections...4

1.2.1.1 Calculating the value of being a beta tester...5
1.3 Expand your experience ..5
1.4 How am I defining Beta Testing?..5
1.5 What should you beta test?..6

2 Exploring The Beta Testing Context ... 7
2.1 Context Attributes ...7
2.2 The Development Factor ...8
2.3 Beta Programmes Explored...9

2.3.1 Large and Small beta programmes ...9
2.3.2 Open Source vs. the large & small ...9
2.3.3 Beta Programmes Summarised...10

3 How to Beta test.. 11
3.1 Finding Software To Beta Test..11

3.1.1 Open Source ...11
3.1.2 Commercial ..11
3.1.3 Shareware ...11

3.2 It’s Not In Beta ..12
3.3 Tools To Use ...12

3.3.1 Install Monitoring Tools ...12
3.3.2 System Tools ..13
3.3.3 Screenshots & Video Recording...13
3.3.4 Clipboard ..14
3.3.5 How to Build a Test Lab (Environment tools)..14

3.3.5.1 Backups & Version Control ..14
3.3.5.2 The Environment itself..15

3.3.6 Finding new tools ...16
3.4 How to Practise Testing when Beta Testing..18

3.4.1 Session based testing ..18
3.4.2 How to practise techniques...18

3.4.2.1 Practising a New Technique..19
3.4.2.2 Alternative Practise Strategies ..20

3.4.3 Your Constraints are Challenges ..20
3.5 An Example Approach to beta testing...20

3.5.1 Session 1...21
3.5.2 Session 2 and beyond ...21

3.6 Knowing what to test (some notes) ...22
4 End Notes.. 23
5 Bibliography ... 24
6 Appendix A - Tool Pointers.. 24

6.1 System Info ...24
6.2 Version Control & Backups ..25
6.3 Emulators ..25
6.4 Clipboard utilities ..26
6.5 Watchers..26
6.6 Diff ..26
6.7 VNC ..26
6.8 Screenshots..26
6.9 Fault Injection ...27

7 Appendix B – How to Find Software... 27
8 Appendix C - Techniques to Try ... 29

Many thanks to my Beta Testers:
• James Lyndsay [www.workroom-productions.com]
• Robert Sabourin [www.amibug.com]

Any remaining defects are the fault of the author. Never blame the tester for defects in the system.

www.compendiumdev.co.uk 2 © Compendium Developments 2003

http://www.workroom-productions.com/
http://www.amibug.com/

1 Introduction

As professional testers we are expected to buckle down
and test software under whatever circumstances are
prevalent in the project. There are an enormous amount
of skills required to test software effectively and this
paper looks at one novel approach for gaining those
skills. Through the practise of beta testing.

Various testing books and articles are available that
discuss Test Process Improvement. Test Process
Improvement can start by improving yourself. Be
the best tester you can be.

1.1 On Practising and Learning
When we are involved in a particular skill, day in and day
out, it is easy to view practise as unnecessary. But a lot of
the time we are doing the same old thing and the learning
experiences may be fewer than we realise. We may well be
reinforcing habits. The choices we make for testing should
be justified, not habitual responses to the notion of, or need
for, testing.

The work situation may not always be the best place to
learn. Learning requires the ability to get it wrong. And if
you think about beta testing then I give you permission to be
wrong, permission to experiment and permission to try new
things. Give yourself permission to learn.

n

ck rather than the weak spots of the
ftware under test?

ster a new attitude, which you can
en apply in your daily job.

1.1.1 Are you in a rut?
Are you having to test according to a methodology rather tha
adapting your methods to the software under test? Are you
running old tests because you have been told to achieve
coverage of the test pa
so

Under these, or similar, circumstances it is easy to think that it i
hard to enjoy your job or do your job properly. Well, beta testin
is a way of trying out new things in a safe environment and you
can use the process to help fo
th

Ho do you know you are in a rut?w W t makes the rut possha
• You use one or two techniques
• And you use them all the time

You r• ework loads of scripts and

sting
 Testing is boring

• & Proc

e tools

• You don’t know any

tests
• You get stressed
• You don’t enjoy te

Methodology
Restrictions

• Inflexibl
• Politics
• Timescales
• Development Process

•

If any of the rut signals above apply to you then I want to tell y
development process”. It really is, I tell people this all the time.

metimes they’re other testers, but testing is, it is! so

www.compendiumdev.co.uk 3
“Merely repeating a performance many
times does not give the high degree of skill
that we see in the expert telegrapher or
typist. Ordinarily, we practise much less
assiduously, are much less zealous, and
have no such perfect measure of the
success of our work. For “Practise to
make perfect”, it must be strongly
motivated, and it must be sharply check
up by some index or measure of success o

ed
r

failure.”
R.S Woodworth [4]

s
g

ible?
ess

better

ou th
 The
“…when our performance and
attitude become jaded and weary,
self-effacing and apologetic, there
are two options. One is to
eventually stop performing, bored
with the whole thing… But the other
option is to completely re-discover
the art, and change ones idea of
what magic is and what ones role as
a magician might

Derren Brown [1]
be.”
“…the best way of learning is not through
the computation of information. Learning is
discovering, uncovering what is there in us.
When we discover, we are uncovering our
own ability, our own eyes, in order to find
our potential, to see what is going on to
discover how we can enlarge our lives, to
find the means at our disposal that will let us
cope with a difficult situation. And all this, I
maintain, is taking place in the here and
now.”

Bruce Lee [6]
 W s of getting out of the ruay t:

!

different

• Read the rest of this paper…

• Do something
• Do it quicker
• Do something crazy
• Attend a testing conference

at “Testing is the best job in the
y look at me like I’m crazy,

© Compendium Developments 2003

• I get paid
• I test ALL day

I’ve got better things to do with

ftware –
let the developer test it!

my time
• I’d rather just buy the so

 to test

•

• Time is money
• I don’t need to practise

you can be, and have nothing more to learn then stop
reading now as you really don’t need this.

I truly believe that everyone can b

“…point out that special mental

1) Increased Income

3) ation in higher
degree

4) Increased capacity for being of
use in the world”

Percy C. Buck [2]

esting allows you to do: Planning, Designing, Managing, Communicating, Programming/Scripting,

hew, that’s a lot of good stuff. No other role has such variety, such influence and such skills required

hat can be of use and it is worthwhile knowing what they do and
when to use them. Practise them so that when you come to test in the real world you know what to do,

y. Do you rely on one or two techniques?

his is just a short advertising list of features. If this was
it with And even more!… but
is is a serious paper.

You
•

: Web, Linux, Windows, DOS,

• testing: performance testing, GUI automation, API automation
ompiled e.g. Perl, Ruby, Python, VB.

y
nvironment as the book context was different from my work context. I hadn’t managed to grasp the

earning, the more effective I was able to be.

When you practise testing by beta testing, you are getting more experience that you can apply to
at will make you more successful and will give you more choices in

t is all

 the world”
Percy C. Buck [2]

esting allows you to do: Planning, Designing, Managing, Communicating, Programming/Scripting,

hew, that’s a lot of good stuff. No other role has such variety, such influence and such skills required

hat can be of use and it is worthwhile knowing what they do and
when to use them. Practise them so that when you come to test in the real world you know what to do,

y. Do you rely on one or two techniques?

his is just a short advertising list of features. If this was
it with And even more!… but
is is a serious paper.

You
•

: Web, Linux, Windows, DOS,

• testing: performance testing, GUI automation, API automation
ompiled e.g. Perl, Ruby, Python, VB.

y
nvironment as the book context was different from my work context. I hadn’t managed to grasp the

earning, the more effective I was able to be.

When you practise testing by beta testing, you are getting more experience that you can apply to
at will make you more successful and will give you more choices in

t is all

exertion may result in personal
advantage in the following ways:

2) Increased social consideration
Pleasurable occup

TT
Understanding every aspect of the software, Environmental, Telling it like it is – honesty, Telling
people they’ve done wrong, Telling people they’ve done great, Saying “No”.

Understanding every aspect of the software, Environmental, Telling it like it is – honesty, Telling
people they’ve done wrong, Telling people they’ve done great, Saying “No”.

PP
of it. I’d rather be a tester than any other role on the development process. Remember that. Work your
way out of the rut so that you can see/feel that again.

Now, Testing has so many techniques t

of it. I’d rather be a tester than any other role on the development process. Remember that. Work your
way out of the rut so that you can see/feel that again.

Now, Testing has so many techniques t

and how to do it, and you can do it quickly and effectivel
That’s a rut signal, its time to change.
and how to do it, and you can do it quickly and effectivel
That’s a rut signal, its time to change.

1.2 Why should you beta test?

1.2 Why should you beta test?

TT
a mail shot then I’d follow a mail shot then I’d follow
I wouldn’t do that to you, thI wouldn’t do that to you, th

 should beta test to…
Try out new software

 should beta test to…
Try out new software

• Try out new technology platforms that you don’t
normally get to test on

• Try out new technology platforms that you don’t
normally get to test on
Embedded Systems, Handhelds Embedded Systems, Handhelds

• Try different types of tools: test tools, assisting tools • Try different types of tools: test tools, assisting tools
(screen capture tools)
Try different types of
(screen capture tools)
Try different types of

• Learn new programming languages - scripting and c• Learn new programming languages - scripting and c
• Try different test techniques and approaches: cause effect graphing, orthogonal array testing,

session based testing
• Try different test techniques and approaches: cause effect graphing, orthogonal array testing,

session based testing
• Build choices in the way that you approach testing.
• Test software you don’t know the internals of, and that’s challenging.Expand your knowledge and

learn by going outside your comfort zone.Yes, all that and even more…
I remember when I was a young tester, getting frustrated with my testing environment, thinking “there
must be a better way than this” but not knowing what it might be. So I read many testing books to get
the techniques, but after reading them I often couldn’t see how to apply that technique to m

• Build choices in the way that you approach testing.
• Test software you don’t know the internals of, and that’s challenging.Expand your knowledge and

learn by going outside your comfort zone.Yes, all that and even more…
I remember when I was a young tester, getting frustrated with my testing environment, thinking “there
must be a better way than this” but not knowing what it might be. So I read many testing books to get
the techniques, but after reading them I often couldn’t see how to apply that technique to m
ee
subtleties of the technique to use it effectively quickly. I really needed to practise, and I did. And the
more I practised and reflected on what I was l
subtleties of the technique to use it effectively quickly. I really needed to practise, and I did. And the
more I practised and reflected on what I was l

And I know that I have to keep learning, and keep practising, because every project I work on has new
challenges that I have to be able to embrace.

And I know that I have to keep learning, and keep practising, because every project I work on has new
challenges that I have to be able to embrace.

your normal testing job; th
your approach.
your normal testing job; th
your approach.

1.2.1 Objections
Yeah, I know. Trust me, I hear these objections all the time
when I talk about beta testing. And that’s all great, if i
true

1.2.1 Objections
Yeah, I know. Trust me, I hear these objections all the time
when I talk about beta testing. And that’s all great, if i
true. Sometimes it is important to just relax, sometimes it is

etter to just buy software. And if you are already the best

enefit from continuing to

b

www.compendiumdev.co.uk 4 © Compendium Developments 2003

learn. I beta test because I want to. I want to be a better tester. I want to use software that works (on th
cheap!). And I want to e

• D
D•

 D
• D
•
• D

nd get a lot back. You ca

La
• D

Would

outside our work environment by beta testing software that
provides scope to experience new things. We can choose th
types of experiences we want to gain.

Experience is not necessarily gained by length of time or
number of jobs. I meet experienced testers

e
xperience the joy of testing rather than the mundane political rigmarole that

can occur on a day-to-day basis.

ning experience. It is also

any testers I speak to don't get involved in beta testing because they quantify it monetarily as a

oftware is more than
ey would have charged themselves out at.

I don’t value it in those terms. I look at it in terms of the experience I’m gaining, the free and focussed
et from the developers.

 it a I n too.

e

nt company, our
xperiences would be different. We can gain new experiences

e

 who have been
sting for 10 years, and yet in some ways they are very inexperienced be

e are all inexperienced in the things we haven’t tried. And when you ar

experience from scra
make you less efficient and more prone to failure.

oad

sting?
 that we at least know what the other person means. And be warned, I a

testing in

ing the system in the way
efinition it lacks something. It lacks Attitude

For me, Beta Testing software is exciting, challenging and a great lear
incredibly enjoyable.

1.2.1.1 Calculating the value of being a beta tester
M
negative value. They calculate the value as: -1 * ((Hourly Rate) * (Hours spent testing)) and for them it
is only worth it if they get a free copy of the software and only then when the s
th

training that I’m getting, and the positive feedback I g

I get from the testing what I put in to it. I make the most of

1.3 Expand your experience
The environments in which we work can limit the experienc
we gain. If we worked in a different industry sector or a
different hardware platform or a differe
e

te
only one way of doing things. By the same token, working on 10 differen
employers may not make you as experienced as you could be if you have
projects or doing similar types of testing.

W
be doing the best thing for the next project, you might give habitual respo
will know any better, or you might have to learn the

Beta Testing can help break habitual approaches to testing and br
tester by increasing their learning opportunities.

1.4 How am I defining Beta Te
Definitions in testing are a common source of argumentative fodder, but t
so

 this paper, to suit my own nefarious purpose.

To that end, the definition of beta testing put out by standard BS 7925-1 i

“Operational Testing at a site not otherwise involved with the so

A fairly standard definition that doesn’t quite make the point that I want t
beta testing is testing on a different site, probably by potential users and p
way. And yes, Beta Testing is operating & trial
d , and I want you to bring so
I want you to enjoy it, and I want you to get better at it so that you are the

www.compendiumdev.co.uk 5
Are you experienced?
ifferent companies?
ifferent methodologies?

ifferent Hardware Platforms?

ment

ifferent Techniques?

ifferent Software Develop
nguages?

ifferent Tools Sets?

 you like to be? I would.
cause they have experienced

ar

e inexperienced you might not

tch on that project which will

en the experience of the

 help frame a discussion
m going to redefine beta

that a user would, but as a

t projects for 10 different
 only been involved on simil

nses, and possibly nobody

hey

s

ftware developers.”
o make in this paper. Yes,
robably in a less structured

me Attitude into your testing.
 can be and best tester you

© Compendium Developments 2003

possibly the best tester in the entire world (insert maniacal laugh here). For the moment, I want you t
view beta testing in a similar fashion to me…

“Downloading Stuff off the inte

www.compendiumdev.co.uk 6

f the main reasons anyone
acc f re urately in terms o

os, d most of the pe

Some of th

Then I wasn’t sure I had what it took to test system level applications and

So

•
• You will be testing software you don’t know the internals of, and

•
•

you extra design documents or requirement lists or program
specifications. You will have to work with the documentation
provided.
Expand your knowledge and learn by going outside your comfort zon

Before I started beta testing, I had only ever tested large applications, and
structured way. That was a

o

rnet and Testing the **** out of it.”

 one o
d mo

bug an ple

rom the testing. They already know that when you load in a
le and save it, that the file gets saved to disk. What they don’t know

k
e

ood.

e methods for testing in this way are described in “How to
Break Software” by James Whittaker. And there are plenty of good

esting.

 to choose th

.

ave no way of knowing the internals of. Nobody is going to show

 very safe comfort zone for me and it was easy
r techniques and say that I was ‘testing’. But really, I wasn’t sure if the s

p

omfort zone to find out.

graphic applications, but I decided to find out. (What did I know about
graphics? (Not a lot as it turned out, but more than enough to find bugs)),

And there are swathes of software types that I haven’t even started on yet
how to test a specific type of application then I’ll find something to Beta T

I’m talking about bugs. Ultimately, whatever spin we put on testing,
sponsors testing is to find bugs. I could define it less colloquially an
defect/fault/error/failure. But I’m generalising because we are talking
around you, that are not testers, are talking bugs.

Test software so that the stakeholders, and people we report to, get
value f
fi
is that when you save the file to a disk that doesn’t have room for the
whole file, the system crashes and blue screens the system. They loo
to you for those testing skills and experiences. They rely on you to b
g

ideas in there for learning how to change your approach to t

One of the biggest and easiest ways of changing your testing approach
attitude.

1.5 What should you beta test?
When beta testing, compared with testing for a living, we get
picking software we are interested in we maximise our interest and
motivation

h

o
smaller applications. I wasn’t sure I was going to find defects. I might em
professional tester’, couldn’t find defects in these smaller commercial ap
exploratory testing was going to work, or if I had what it took to make it w
c

W at Kind of h Attitude?
• Experimentation

s

• Playfulness
• Observing

• Desire to learn

• Professionalism
• Tenaciou

• Thoughtful

• Wonder
© Compendium Developments 2003

“Sometimes I test
it whether th ey

want it tested or
not!”

ftware that:
ou find Useful

Interests You
Y

You want to use & own
You want to Test

e.

 I had only tested those i

e software we will test. By

n a
 to hide behind methodologies
kills I ha o
arrass my

lications.
rk. So I stret y

, but I will. If I want to learn
est that allows me to.

 is by adopting a different

d could be applied t
self if I, ‘a

 I wasn’t sure that
ched m

b

o

2 Exploring The Beta Testing Context

For the purposes of this particular text I am going to generalise software development into two types,
industrial and commercial. A huge, sweeping generalisation I know, but the grouping is there to allow
me to highlight some major differences. And remember this is purely my experience and prejudices
(adopted purely for the purposes of this paper).

Industrial
• The product is just something that will be used internally
• The core business of the company is not the product, the product is an aid

Commercial
• The success of the product is the success of the company
• The product is the company
• The product has to be good enough to compete with other similar products

Industrial Beta Testing (Commercial)
• Methodology
• Industry Standard Tools
• Meetings
• Politics
• Test Plans
• Subjective Success Measurement

• Agile
• Effective Tools
• Communication
• Focus
• Learning
• Success = Sales

There are many more differences than this and the important thing for us, is not necessarily to list the
differences but to recognise that those differences provide us with a different environment to work in,
change the subjective experience associated with testing, and open up new learning opportunities.

2.1 Context Attributes
The context in which you will find yourself practising is going have attributes that will be different
from your normal working environment. Some of these are constraints: time and resources, but others
are expansive and full of choices: tools, planning.

Time is going to be short, you are going to be doing this in your spare time, which means either
evening or weekends. Spare time is a valuable commodity so you want to make your time as focussed
as possible.

Planning is going to be quick but enormously important. You will not be writing copious documents
describing what, and how, you are going to be doing, but you do have to plan in order to get the most
out of your short sessions.

Resources are going to be you and whatever computers and operating systems you have to hand. This
means that you don’t have to book them in advance but it also means that you will have to look after
them. You will not be requesting more people or more equipment. You will be utilising whatever you
have.

Tools, you have access to whatever tools you can find. Many of these will be free on the Internet, some
of them will be incredibly expensive software products that you are either using a demo of or are beta
testing. The danger is that the vast choice that you have here can overwhelm you, but too much choice
is better than no choice at all.

No Rework, you are going to be short of time, you are going to be testing fast and effectively. You will
not be writing test plans that require review and rework, you will not be writing test scripts that require
review and rework. (Unless of course, you want to). Instead of rework, you will be constantly refining
your approach as you do it, and as you learn more about what you are doing.

Beta testing gives you choice.

www.compendiumdev.co.uk 7 © Compendium Developments 2003

2.2 The Development Factor
When you start Beta Testing, some of the things that have been taken for granted on a development
project are not going to be there. This is an enormously liberating feeling.

• The developer will be immensely interested in your work
• You will receive a lot of very valuable positive feedback, which you may not be used to
• There are no politics
• There are no methodology police
• There are no rules

When I’m working on testing projects a lot of the other tester’s will be moaning about the project or the
managers or the methodologies or the development staff. And on a bad day I’ve been known to do that
myself. I have made the glib statement, half in jest and half ruefully that “If they don’t hate you then
you’re not doing your job properly”. It usually gets a laugh (OK, sometimes it gets a laugh) but it
obviously isn’t true, its subjective, everyone on the project is working for the project but we all get
caught up in our own politics, plans and expectations.

I usually encourage people to beta test with the opposite of the above statement “If they don’t love you
then you’re not doing your job properly.” I have found that your efforts, as well as being enormously
beneficial to you, when planned correctly, are of enormous benefit to the developers.

From speaking to Shareware developers about their beta test programmes, if 1000 people help out in a
beta test, about 5 of them will be of any value. The good beta testers are worth their weight in gold and
the developers really appreciate those 5 people and will lavish praise and freebies upon them.

“Bugs are not good or bad!
But some bugs are Important”

Robert Sabourin [13]

Developers will want you to test their product, and find any bugs
that you can. They know that their software has bugs, they are
under no illusions that it doesn’t. They also know that they will be
releasing that software and they would prefer to release it with as
few bugs as possible. But the longer the software is unreleased, the longer they are not making any
money from it. And they will release it, bugs included. So they really want you to find as many big
bugs as you can and feed them back to them as clearly and concisely as possible.

Your contribution will be measured in terms of the feedback that you provide. To the developer,
it doesn’t matter how long you spend testing it or what you learn from it. All they are concerned
with is what they will learn from your work. They are interested in improvement.

Communication with the developer should be simple, clear and direct. They don’t know your test plans
or environments, all they know is what you communicate to them.

Keep it simple:

• Show them what you did by including screenshots, or screen recordings, in your defect reports
• Send them the test data you used.
• Tell them what you did

I usually have a word processor document that I use to track my testing. I embed screenshots in it with
a small amount of textual description. And when I’m done testing, I zip it up and email it off. Simple.

Have I mentioned that you can get free software by doing beta testing? You’re certainly not going to
get paid, and the only way that the developer can reward you is by giving you a discount or a free copy.
This shouldn’t be the only reason for getting involved. In fact it is almost embarrassing that you are
doing this for your benefit and learn so much by doing it that you would actually get rewarded for
doing it.
They will really appreciate you.

www.compendiumdev.co.uk 8 © Compendium Developments 2003

2.3 Beta Programmes Explored
I’ve already mentioned that I primarily test shareware programs and in
the context of this section they would be small beta programmes. What I
haven’t mentioned yet, but is probably obvious, is that all of my
experiences of Beta Testing are from the MS Windows platform and
primarily desktop based applications. Beta Test programmes exist on all
platforms, and if there is something you want to test on then I guarantee
that there will be something out there that you can test and something
new to learn.

“…testing cross-platform
stuff (Flash, Java, browser-
facing) introduces new
questions.”

James Lyndsay

There are similarities between the various types of beta programmes.

• You get to plan your beta testing to use the techniques that you want to practise.
• You have the freedom to do what you want
• You can make a difference to the quality of the product
• You get to learn an enormous amount, they all have tremendous scope for learning

But the important thing to look at when choosing the type of programme that you want to get involved
in are the differences.

2.3.1 Large and Small beta programmes
By large programmes, I mean those run by Adobe or Microsoft. By small I mean those run by
independent software houses which may have only one developer – this software is often sold as
Shareware.

You will very likely get lost in a large beta programme. Defect reporting is probably going to be fairly
formal – filling in a form on a web site, and you will be allocated a defect ID. You will get very little
personal feedback from the developers, but they may follow up on your defect reports and ask for more
information.

You will, however, get access to some very expensive software for very low cost.

When you help the smaller developers do beta testing you will get a lot of personal feedback and
usually quite quickly. You really get to see your contributions making a difference to the product. That
can be an enormously satisfying experience.

2.3.2 Open Source vs. the large & small
Open source software isn’t, strictly speaking, in a beta state. There are ‘stable’ and ‘development’
releases and the development releases are what would be classed as Beta.

Open source software covers a lot of ground, sometimes it is cutting edge, and sometimes enormously
derivative so you have a wide choice of software types. There is open source software for every
technology platform so if there is a particular technology that you want to test or experience you will
find it in the open source realm.

There are many tools in the open source world that are suitable for use during testing so it may be
worthwhile getting involved in the open source community for those particular tools.

Because open source software has so many developers, it is often hosted on sites that allow developers
to collaborate so there are usually fairly formal methods for reporting defects, either in a database
system like Bugzilla or on forums that are provided.

You are unlikely to get personal responses from developers to your defect reports but if you really get
involved then you are likely to get responses from the community in general.

Helping out with the beta testing of open source software is a great way to evaluate software that you
might find useful in your work place and you might end up saving your company a small fortune in
license fees.

www.compendiumdev.co.uk 9 © Compendium Developments 2003

2.3.3 Beta Programmes Summarised
This is just a small table summarising the previous section and I’m doing this so that you can examine
your own motives for testing and what you want out of it. Then compare the attributes of your
motivation with this table. See which type of programme best fits your motivation and then choose a
piece of software from that realm and get testing.

Attribute Large Beta Small Beta Open Source
Feedback Impersonal Personal Impersonal
Free Software Sometimes Generally Always
Cutting Edge Often Sometimes Sometimes
Alternative
Technologies

Sometimes Sometimes Often

Cool & Unusual Rarely Sometimes Often

www.compendiumdev.co.uk 10 © Compendium Developments 2003

3 How to Beta test

The previous section was all about the context. Now we are going to look at what we actually do within
that context.

I’m going to present notes on:

• Finding software to Beta Test
• Tools you can use to help you when beta testing and to help build a safe test environment
• Ways of practising testing
• A worked example of a Beta Testing approach
• Notes on Knowing What to Test

3.1 Finding Software To Beta Test
“Downloading stuff off the Internet and testing the **** out of it” pretty much tells you how I beta test
and how I find the software. I trawl the Internet hunting for software that I can practise and experiment
on.

This particular section describes the high level approaches that I take. The various websites mentioned
are detailed in Appendix B.

There are a number of web sites that list current beta test programmes, these handle big commercial
beta tests and smaller shareware programmes:

• www.Betanews.com
• www.Betatester.com
• www.SoftwareMarketingResource.com
• www.Betattests.net

3.1.1 Open Source
I generally find the open source software that I use from one of three places:

• www.Freshmeat.net
• www.Sourceforge.com
• www.Gnu.org

3.1.2 Commercial
Commercial software companies list their software on the beta testing programme news websites listed
above.

The other approach is to find a company that you respect and whose software you like to use and
either:

• Email them and ask if they have a beta test programme, outlining the fact that you admire
their software and are a professional tester

• Check their web sites for a beta testing section, Adobe have one, other companies do to.

3.1.3 Shareware
My favoured approach is to look for the kind of programs that I want to test. There are so many
software download sites that it would be unproductive to list them all so I’ll list a single site that lists
many of them: the ASP other Shareware Sites List [www.asp-shareware.com/info/searchsites.asp]

The ASP (www.asp-shareware.org) is a fantastic resource in its own right if you join it. It is primarily
there for shareware authors, hence the name Association of Shareware Professionals, but as the
majority of the people in the organisation are developing software, many of them are looking for
people to help test their software. And they are inordinately generous about giving away free and
discounted software to fellow members.

www.compendiumdev.co.uk 11 © Compendium Developments 2003

http://www.betanews.com/
http://www.betatester.com/
http://www.softwaremarketingresource.com/
http://www.betattests.net/
http://www.freshmeat.net/
http://www.sourceforge.com/
http://www.gnu.org/
http://www.asp-shareware.com/info/searchsites.asp

I have personally helped beta test many pieces of software for ASP members and if this is something
that you want to do. I recommend joining.

3.2 It’s Not In Beta
If you do download software that is not ‘officially’ in beta test then one way to approach the situation is
to:

• Test it as though it were,
• Report any defects to any listed contacts via email,
• When you report any defects mention that:

o you are a professional tester,
o you would like to help test any future versions of the product,

• If you want to keep testing it then ask if they have a free evaluation license that will allow you
to evaluate the product longer so that you can subject it to more detailed testing

Earlier I mentioned that you can get free registrations for software by beta testing it. If this is your
motivation then make sure your defect contributions and feedback are worth it before asking for a free
license.

3.3 Tools To Use
This section will list a few tools that I find useful when beta testing software. More information on the
tools mentioned is provided in Appendix A. As always, there are many more tools in the various
categories than I have provided, I have just listed the ones that I use regularly.

But, this section isn’t just about tools for you to use for beta testing. Each of these tools can be part of a
normal industrial test process. Part of the reason for beta testing is to evaluate these tools and see how
useful they can be for your day job.

For some reason, it is easy to get hung up on the idea that the main tools we have to use are the big test
tools for test management and test execution. But any tool that we use in the course of our testing is a
test tool: notepad, windows explorer, Microsoft project can all be test tools. And each of these has
alternatives that we might want to seek out and see if they help us do a better job. Where I can help it, I
never use notepad anymore, and once you identify alternatives it is easy to keep looking for better ways
to improve your process.

But this particular section is not going to have alternative text editors or file managers, I am instead
going to point you towards types of tools that you might not even know exist. But as an exercise to the
reader – have a look for an alternative text editor, try it out, maybe it will serve you better than notepad
– I’ll bet your programmer’s know and use alternatives.

3.3.1 Install Monitoring Tools
Constructing an install routine for a commercial application is a common source of errors. Anyone who
has installed a program and then noticed that other programs installed on their system suddenly no
longer work will know that from experience.

There are a number of common things that can go wrong with an install:

• Overwriting a dll with an older version or a version that is incompatible with the operating
system.

• Allowing the user to install to a chosen folder but hard-coding paths in the application

There are some articles on Stickyminds that help reinforce the need for installation testing and give
pointers on what to check:

• A good simple list on what might go wrong, by James Bach
[www.stickyminds.com/s.asp?F=S1844_TEM_2].

• An article on installation and uninstallation testing by Chris Agruss
[www.stickyminds.com/s.asp?F=S5001_MAGAZINE_2].

• And a cautionary tale on the need for installation testing by Lincoln Spector
[www.stickyminds.com/s.asp?F=S2635_COL_2]

www.compendiumdev.co.uk 12 © Compendium Developments 2003

http://http://www.stickyminds.com/s.asp?F=S1844_TEM_2
http://www.stickyminds.com/s.asp?F=S5001_MAGAZINE_2
http://www.stickyminds.com/s.asp?F=S2635_COL_2

It is useful to know what a system does during the install to help diagnose any symptoms or predict if
anything might go wrong. For example: installing dlls in to the local folder which are actually shared
by other systems and changing the registry entry to point to the new location, but when the system is
uninstalled the dll which is still in the system folder is no longer registered with the system. This can be
difficult to detect during normal testing as an uninstall test rarely extends to checking every other
installed application, and a lot of testing it done on clean systems.

An install watcher like InstallRite [www.epsilonsquared.com] can monitor the system for changes and
help restore it back to normal after the install is complete. And most important of all it provides
valuable reports for the developers of the system.

3.3.2 System Tools
There are a vast number of system tools that are useful during testing. These can help provide insights
into the black box before you.

Various tools from the wonderful www.sysinternals.com website are enormously useful to help provide
more information to developers in the event of defects. All of the tools listed below are from
sysinternals.com.

FileMonitor can provide a detailed list of files which are being accessed at the time of a system failure.
Developers can use this information to identify dll conflicts or misuse of dll functions in their
applications.

ProcessMon gives an insight into what processes are running.

Experiment with these tools and see what extra information they allow you to pass on to your
developer. The black box system before you need not be so hard to see into.

3.3.3 Screenshots & Video Recording
This is the most useful type of tool that I use and I use it on all the beta testing that I do.

Screenshots are a natural way to want to report visible bugs. If a picture is worth a thousand words then
a screenshot can actually be an entire defect report. Which is great when you are working to a limited
timeframe, as we are when beta testing.

Very few companies that I have worked for have had screenshot programs installed which means doing
a ctrl+PrtScrn, pasting it into a picture editor, usually paint, cutting out the relevant section, then saving
it or pasting it in to somewhere else. All of that takes time when what I want to do is get on with the
testing.

Screenshot programs allow me to take a screenshot of just the bit I want (no further editing, unless I
want to highlight the area of the defect). Then I jump back into testing again. The tools also have
facility to annotate your screenshots very easily.

Screenshot programs can even take a screenshot every second (or time of your choosing) and store it to
the drive. They can also build movie files so you can show the actual sequence of moves to replicate a
defect. All highly useful.

I use SnagIt [www.techsmith.com] on a regular basis, but there are free alternatives such as MWSnap,
which I also use [www.mirekw.com/winfreeware/mwsnap.html].

For movies I use CamTasia [www.techsmith.com], but again there are free alternatives available in the
form of CamStudio [www.ehelp.com/camstudio/product/screenrecording].

www.compendiumdev.co.uk 13 © Compendium Developments 2003

http://www.epsilonsquared.com/
http://www.sysinternals.com/
http://www.techsmith.com/
http://www.mirekw.com/winfreeware/mwsnap.html
http://www.techsmith.com/
http://www.ehelp.com/camstudio/product/screenrecording

3.3.4 Clipboard
The clipboard in windows is an excellent resource, but out of the box it stores only one item. There are
extensions provided to the clipboard by Microsoft Office and you can view the clipboard with the
Microsoft Clipboard Viewer program. Again all of this takes too much time.

By installing a clipboard extender you can have an almost unlimited amount of items in your clipboard
that you can view directly. This is enormously useful for a number of ways:

• You can see how the system under test is storing the data on the clipboard
• You can store test data in the clipboard to save retyping
• You can track your testing by copying information you type in to the clipboard for later

reviewing.

I prefer to use Clipmate [www.thornsoft.com], but I have been known to use the freeware Yankee
Clipper III [www.yankee-clipper.net].

3.3.5 How to Build a Test Lab (Environment tools)
The environment that you are testing in is very important. Not just to the testing at hand, but also to
you. This may be the first time that you have had such an investment in the environment.

“If you are in the same city
as a company and volunteer
to beta test the software, and
are serious – they may offer
you some hardware.”

Robert Sabourin

Remember:
• It is your computer
• You use it for other things
• You paid for it
• If anything goes wrong with it, you fix it

Compare that with a normal industrial test environment:

• Someone else paid for it
• Someone else backs it up
• Someone else repairs it
• Someone else might even maintain it

Be aware of the dangers of beta testing software – yes it has a lot of benefits but…

• The software is in beta
• It has bugs, and they might be big bugs
• You might get the blue screen of death
• Some bugs can trash your disk

Most of the serious bugs don’t make it in to the release versions of software but are often present in the
beta versions. This doesn’t mean that all software that you beta test has environment-trashing bugs in
it, most don’t, but some will. Be prepared.

3.3.5.1 Backups & Version Control
A backup regime is essential. If as a tester you are not yet paranoid then doing beta testing is a great
way to increase that paranoia.

Paranoia is the
tester’s friend

• Make backups of all your essential files.
• Make disk image backups of your operating system

partitions so you can restore them easily
• Make sure your backups are stored on different disks

File backups can be done with archivers. Most people will be familiar with Winzip [www.winzip.com].
There are numerous archive programs available, it doesn’t really matter which one you use, but these
tools are enormously useful for archiving files and all our test data is typically going to be stored in
files.

We can restore our environments back to a known state if we archive that environment’s data files and
then unarchive them back.

www.compendiumdev.co.uk 14 © Compendium Developments 2003

http://www.thornsoft.com/
http://www.yankee-clipper.net/
http://www.winzip.com/

For version control we want a slightly more sophisticated archiver that allows you to store multiple
versions and restore back to a specific version. CVS [www.cvshome.org] is a free version control
system which can be little hard to set up, but for simple version control tasks, Keep-IT [www.keep-
it.com] is a good little tool. It allows you to track the versions of a small number of files and is
particularly handy for snapshots.

3.3.5.2 The Environment itself
When you get really serious about this then you might want to have a dedicated machine for Beta
Testing. If this has a sensible backup/restore regime with multiple hard drives or partitions then it can
be fast and painless to restore the machine to known setups.

I have numerous backup regimes that I follow, but I actually do much of my beta testing on fairly
isolated environments by using a PC Emulator.

3.3.5.2.1 PC Emulators
Emulators are fantastic beasts. Not only do they allow you to run multiple operating systems on the
same machine at the same time, they also isolate you from problems and let you control your
environment quickly and easily: clean operating system installs, amount of memory and hard disk
space.

Most emulators will run from virtual hard drives so your main machine is immune from any install or
system problems that may occur when you are beta testing. Your running test log where you are
recording all the testing that you are doing, will not crash when/if the software you are testing blue
screens your machine. It’s like having an Uninterruptible Power Supply for the operating system.

Here I am running 2 virtual PCs, one using NT4 and one using Windows 98 on a machine running
Windows XP. That’s three machines and 3 operating systems at the same time. Client Server testing
has never been so convenient.

I highly recommend a PC emulator to help control a beta test environment. It is an essential tool.

www.compendiumdev.co.uk 15 © Compendium Developments 2003

http://www.cvshome.org/
http://www.keep-it.com/
http://www.keep-it.com/

I use Connectix (now Microsoft) Virtual PC [www.microsoft.com/windowsxp/virtualpc], but the other
main competitor is VMWare [www.vmware.com], and there is the freeware BOCHs Emulator
[bochs.sourceforge.net]. Or, if you run Linux you could get WINE [www.winehq.com] up and running
but although it might let you run the software it isn’t as accurate an environment.

The other excellent feature with a PC emulator is the use of UNDO files so that you can make changes
to the virtual PC, like installing software, but with version control over the undo file you can restore
that virtual hard drive back to previous states in seconds.

3.3.5.2.2 Removable Hard Drives
With one machine, installing a hard drive caddy is an incredibly convenient way of using multiple hard
drives, each of which could have multiple operating systems installed on it and allows you to have your
main work hard drive out of the way while you use a more disposable removable one for beta testing.

3.3.5.2.3 Multiple Machines
If you are fortunate enough to have multiple machines linked together then VNC
[www.uk.research.att.com/vnc] is a great free tool for remotely controlling another machine on the
network.

Here I am controlling my desktop from the comfort of a laptop hooked up on the same network.

VNC is another excellent aid for maintaining your test environment

3.3.6 Finding new tools

• Ask everyone you meet what cool software they use
• Ask the developers on your projects what software they

use, I guarantee that some of it will make your life
easier

• Look a the software you use everyday and then check the d
search engine (I use google) for a replacement: “<toolnam
alternative”

www.compendiumdev.co.uk 16
.

“Feed a man a fish and he’ll
probably ask for more, teach a
man to fish and you can tell him
to go do it himself!”

Altruistic Al
ownload sites or your favourite
e> replacement” “<toolname>

© Compendium Developments 2003

http://www.microsoft.com/windowsxp/virtualpc
http://www.vmware.com/
http://bochs.sourceforge.net/
http://www.winehq.com/
http://www.uk.research.att.com/vnc

• Sign up at some of the download sites for their announcement emails and they will send you
lists of new tools that you can try. I recommend the www.SharewareJunction.com newsletter
‘All Aboard!’

• Sign up with other mailing lists that tell you about software and hints and tips:
o Langalist www.langa.com
o Open Testware Reviews www.tejasconsulting.com/open-testware

• The tools lists on www.testingfaqs.org
• Check out www.stickyminds.com for previous columns on this topic by James Bach [7] and

Danny Faught [8]
• Visit the Compendium Developments’ Alternative Tools List

www.compendiumdev.co.uk/alttools

Look everywhere you find software. And you will find more tools than you can handle and while you
may not need them all now, one day, one of them will be just the thing you need, and if you know
about it then you will save yourself so much time and effort that you will be glad you do this.

www.compendiumdev.co.uk 17 © Compendium Developments 2003

http://www.sharewarejunction.com/
http://www.langa.com/
http://www.tejasconsulting.com/open-testware
http://www.testingfaqs.org/
http://www.stickyminds.com/
http://www.compendiumdev.co.uk/alttools

3.4 How to Practise Testing when Beta Testing

“Professor William James in his [Talks to Teachers on Psychology]…offers five pieces of advice, out
of his great experience, to those who wish to acquire any new habit:

1) Start with a flourish of trumpets
2) Miss no chance of putting your resolve into practice
3) Create opportunities
4) Never make an exception
5) Don’t talk too much, do it”

Percy C. Buck [2]

“But proficiency is always much more rapidly acquired if physical effort is accompanied by intelligent
aim, and it is preserved longer….”

John Warriner [3]

““Practice makes perfect” is a saying I dislike particularly. Practise makes perfunctory might be more
accurate. Practice is a nominalization. What and how is the student practising? The saying also has
the judge missing (who is deciding the perfection?) and the verb is unspecified (makes what or who
perfect?). There is also an implied cause and effect (makes), and the subject has been deleted (who is
practising?).”

Joseph O’Connor [5]

“Half an hour of playing with awareness is worth six hours of playing without”

Joseph O’Connor [5]

We need to make sure that we get the most out of our beta testing. And that involves:

• thinking about what we are going to do before we do it
• concentrating on what we are doing as we are doing it,
• doing it as often as we can to get the benefits.

3.4.1 Session based testing

Because the context of beta testing is small chunks of time that
are well focussed. One of the first things I recommend that you
practise is Session Based testing.

Session Based testing is just that. Breaking your testing into
small sessions, each with a defined area of study and exploring
that area for that session. There are a couple of management
approaches that have been used and these have been documented
by Jonathan Bach [9] and James Lyndsay and Niel vanEeden
[10].

s
r
n

3

I
y
a
y

w

“When working at Technique,
whether muscular or mental,
there always comes a point
where we have done enough. If
we continue, from
conscientiousness or
compulsion, we shall get no
further benefit from our work.
Psychologists would say that
we have reached ‘Saturation-
point’”.

Percy C. Buck [2]

When I first started doing beta testing I tried out the Session
Based approach. I experimented with the Bach Perl scripts and

preadsheets and got a fairly decent feel for how it all worked and am confident that I can now
ecognise contexts where I can use this kind of testing in the real world when I encounter them. I would
ot have been able to do this with assurance had I not practised it on my own.

.4.2 How to practise techniques
“Maxim 1: Any fool can do the
thing that interests him”

Percy C. Buck [2]

 simply do not have the space here to list every technique that
ou can practise and every way that you can practise it. So my
im here is to give you some pointers on how to approach
our practise sessions.

ww.compendiumdev.co.uk 18 © Compendium Developments 2003

One thing to aim for is to practise to learn. I find that when I sit down to practise guitar, sometimes I’ll
end up just playing some tunes, which is fine, I enjoy doing that, but that isn’t practising. At the end I
won’t really have learned anything and I won’t really have stretched myself.

If I sit down and learn how to play “Air on a G String” and then try to play it transposed an octave, or
with a reggae rhythm, then I’m going to be learning. When I set a goal for the practise and make it
something that I haven’t tried before, when I make it a learning experience, then I’m stepping outside
of my comfort zone into the learning zone where all the best practise sessions reside.

There are specific things that I have done to practise some of these techniques and as I document them
here you can read it and go “I can do better than that”, and I hope you do. Now… a list of possible
practise session aims:

• Practising a New Technique
• Improve a technique
• Learn to use a tool
• Try a new System type
• Try an approach
• Practise Planning
• Scenarios that we want to try on the system under test

Let’s look at one of those in a bit more detail.

3.4.2.1 Practising a New Technique

Here are my initial steps for a new technique I’m
going to practise:

• Choose the software I’m going to test
• Read about the technique
• Review the technique with the software in

front of me
• Apply the technique
• Document the testing
• Review my experience

I make sure to do the lot in under an hour, to
whatever level possible in that hour. I find an hour to
be a good practise session length when learning a
new technique. And I stick to it. I may not have fully
grasped the technique but I will have discovered
some of the things that are easy about it, some of the thin
to learn more about it, and then I can roll that learning ov

The first thing I do is choose the software I’m going to
technique that I’m going to practise, but on the interest a
the experience I want to have.

Next I read about the technique. And not in so much d
every book that I have on it and doing all the exercises li
on training courses the exercises that you do magically m
taught? A miracle really, but when we apply it in the rea
not to, and when we can use it to surprise ourselves.

So read about the technique really quickly. It should be w
testing technique in about 5-20 minutes by skimming the
taking longer than that, or you haven’t quite grasped it an
on to the next step anyway.

www.compendiumdev.co.uk 19
“The best antithesis to a habit is the
response of a person to a novel situation,
where neither nature not previous
experience gives him a ready response.
The new response is exploratory and
tentative, while habit is fixed and definite.
The new response is variable, the habit
regular. The new response is slow and
uncertain, the habit fairly quick and
accurate. The new response is attended by
effort and strained attention, the habit is
easy and often only half-conscious. The
new response is apt to be unsatisfying to
the one who makes it, while the habit is
comfortable and a source of satisfaction.”

R.S Woodworth [4]
gs that are hard, some of the things that I want
er to another practise session

 test. I choose it not on the basis of the
nd motivation that it will generate in me, and

etail that I spend several hours looking through
sted – have you ever noticed how in books and
anage to fit the technique that you are being

l world we have to know when to use it, when

ithin your ability to pick up the basics of any
 material and thinking it through. And if it is
d don’t want to start until you have, just move

© Compendium Developments 2003

Reviewing the technique while looking over the software is a quick way to plan out its use. Where do
I immediately think the technique can be applied? Where do I think it will be of no use at all?
(Sometimes I try it there just to be sure). This helps provide a context for the technique in terms of the
software in front of me, not an academic exercise, but the actual software. And as I’m reviewing it I’m
making notes as to where I think it will fit – this will become my more detailed session plan.

Then I start doing it. And I make sure I apply the technique to the best of my ability. I am allowed to
go back to the technique notes to clarify a point – but not for long, this is a doing exercise.

As you go through this, Document the Testing to the most appropriate level as you do it. I use a
number of techniques for this, a pen and paper and I have open a word processor document to make
notes and paste in screenshots of things that I think are unusual or just plain wrong. I usually have the
word processor document open on the same machine just to make it easier for screen capture purposes,
and since I am running the application in an emulator my test notes are not at risk of the software under
test crashing the operating system. In the past I’ve tried outliners, spreadsheets, and mind map software
- Try out different methods for yourself and see what works best for you.

A great tip:
“…as you learn, prepare
a ppt [presentation] to
teach someone about
what you learned about
the software.”

Robert Sabourin

Review the experience when you get to the end of the session. Update
the notes you made when documenting the testing and send them off to
the developer but reflect on what you learned about the way your
approached the testing. What worked? What didn’t? What would have
worked better? What techniques that you already know do you think
would be more appropriate? All of this helps you get better and is a useful
start point for working out the aims of the next beta test session.

3.4.2.2 Alternative Practise Strategies
Obviously the strategy presented above is just one of many that you could adopt.

You might want to pick the software on the basis of the techniques that you want to practise. I tend not
to do this because I want to be forced to adapt my thinking to the software, but if I wanted to really
learn a technique in depth then I would pick software that allowed me to do that. Also if you are having
trouble learning a technique then make it easy on yourself and pick software that will allow you to use
the technique easily.

Pick ‘n’ Mix the steps above and add in a few of your own to get a practise strategy the represents the
way that you want to practise.

3.4.3 Your Constraints are Challenges
There are going to be constraints on what you can effectively test. You may find it difficult to test multi
user systems on your own, but perhaps you could if you practise automation or invite a friend along
and try pair testing.

You may find it difficult to test middleware or highly configurable data driven software, but you might
find ways to do it if you get really creative.
You don’t have to test everything. Learn to recognise the limits of your execution context and to
identify what you would need to remove those limitations.

3.5 An Example Approach to beta testing
The very first time I install and beta test a tool I usually do it in a virtual environment. I actually use the
aforementioned Virtual PC. In this way the software never actually runs on my main machine and I am
less vulnerable to extreme system behaviour.

www.compendiumdev.co.uk 20 © Compendium Developments 2003

I always install on to Windows NT 4.5 first. If there are any install problems they are usually fairly
easy to observe as Windows NT is helpfully prone to blue screening if a rogue piece of software does
something untoward during the install.

And remember, this is an example. I do it differently too.

3.5.1 Session 1
• Installation Testing
• Uninstallation Testing
• Software Overview

3.5.1.1.1 Installation Testing
I have a fairly simple checklist for testing the installation of beta software. I expand and alter this over
time, and sometimes I don’t use this at all. Try it, and then build your own checklist. Different
software, and operating systems are likely to require a different process.

• If I’m not doing it on a virtual environment then I backup
• I run Aida32 [www.aida32.hu] to get a report on the environment that I can send to the

developer
• I run an install watcher to check the install program changes
• Once installed I generate a report of the changes, check it for things that look dodgy
• Reboot the machine
• If the machine reboots successfully then I try and run the software
• If the software runs then the install probably worked ok
• Send the reports off to the developer

The above adds extra time to the install process but it is time well worth spending for the sake of
ensuring that the software doesn’t trash your environment. Remember: Paranoia is the testers friend.

3.5.1.1.2 Uninstallation Testing
Very similar to the install. We need to make sure that the uninstall took away what it was supposed to
but didn’t touch anything that it should have left alone.

3.5.1.1.3 Software Overview (learning)
I usually give the software a quick run through in whatever time I have left. I do this quickly to get a
feel for the options open to me and also to find any quick obvious errors. I don’t do any technique
practising at this point, I just learn the software.

3.5.2 Session 2 and beyond
This is the outline for the information presented in “Practising a New Technique”:

• Objective for the session
o Pick a technique, any technique
o Pick a feature, any feature

• Plan the session
• Do & Document
• Report…session ends…

www.compendiumdev.co.uk 21 © Compendium Developments 2003

http://www.aida32.hu/

3.6 Knowing what to test (some notes)
It is never easy knowing what to test. Sometimes we use the documentation provided, other times we
ask around and identify requirements, sometimes we figure it out by using the software. Sometimes we
don’t get any documentation and no-one tells us anything.

The great thing about shareware developers is that they know exactly what they have changed because
they intend to promote those changes as features. The changes are the marketing selling points.
Shareware developers, and developers in general, are pretty good at making the software work, like
most software you find many of the big bugs by doing extreme things to it. Check out “How to break
software” for some generic strategies.
But as you test and think about the software, thinking about the techniques that you can apply to that
software, provide feedback to yourself:

“Habitual Introspection is
pathological; occasional
introspection, as practiced
by psychologist or poet,
can be a useful technique
but is very difficult.”

Fritz Perls [14]

• How do you know how to test?
• Why did you do that?
• What made you think that would make a difference?
• What are you curious about?
• What are you suspicious about?
• What questions should I be asking myself to learn more about

what I should be doing?

And more generally:Ask the developer, they know…

o what they’ve done
o what they’re nervous about

• What would you do with the tool as a user?
• Observation: follow your hunches, feel the tester inside you, listen to your subconscious test

oracle
• It probably basically works…go extreme

Stuck for ideas? Try:

• James Bach’s Testing Heuristics [www.satisfice.com/tools/satisfice-tsm-4p.pdf]
• How to Break Software [11]
• Lessons Learned in Software Testing [12]
• CSST Technologies GUI Errors checklist [www.csst-technologies.com/guichk.htm]

Or if you want some quick wins, these are things that I have found easy useful and quick:

• Testing of related areas to the change may have been minimal, depends on experience of the
developer

• Do, change, cancel, do, cancel, change, ok, change, cancel, change, do (Cyclic tests)
• Saving & Loading – file handling is often problematic

www.compendiumdev.co.uk 22 © Compendium Developments 2003

http://www.satisfice.com/tools/satisfice-tsm-4p.pdf
http://www.csst-technologies.com/guichk.htm

4 End Notes

Phew, I’ve gone through that pretty quickly. And I haven’t gone
into too much detail because this is a doing exercise. You will
learn by doing this. I’ve tried to point out that it is possible to do
this, hopefully brought the benefits to your attention, shown
some approaches and listed some tools to make it easier and
safer, but fundamentally you have to do the work to achieve the lea
is traditional to summarise the main points. It is probably obvious to
I’m going to point out the obvious ones that I see anyway.

Planning – to get the best out of what you do, think about it before
Tools – use the right and best tools for the software and situation at
Attitude – be playful, tenacious, thorough, professional, and joyful
Time – Value your time and use it wisely
Learn – do something different, try new things out, expand your ex

Here’s a thought. Do it, for the next 30 days…

• Check out the listed tools,
• Find some tools of your own to use,
• Test some software,
• Communicate with the developer,
• Vary, repeat, and add some ingredients of you own

Remember, what we have been discussing in this paper is a reflectio
will find yourself in when you work. Everything we have discussed
every attitude, every learning that you achieve, can all be applied to
difference.

Take every opportunity to improve your skills. How often do you no
you are using? How often do you report it? How often do you figure
keep practising.
And I’ll leave the final words to the little bearded man in the frock c

www.compendiumdev.co.uk 23
“ Improvement in sight-reading
means reducing your rehearsal-
interval”

Percy C. Buck [2]
rning. As this is the final section it
 you what parallels to draw, but

you do it
hand

perience.

n of the larger test projects that you
 here: every tool, every approach,
 larger projects. Do it and see the

tice a defect in some software that
 out how to replicate it? Do it and

oat…
“I reiterate to you, Dear Reader, that you should not think of yourself as a
mere hired entertainer even when you are. You must play that part to the
booker, and fit in appropriately with the venue, but you are actually there
to give a fresh bunch of people an unforgettable time… Don’t do the tired
routines, borne from an arbitrary series of choices you made ten years
ago about what to perform. Lose … anything that you feel that you
couldn’t hold a room’s attention with, and start choosing material that
suits the impact that you would most like to make. Have the courage to
think from this starting point, and to leave ninety-percent of your
repertoire behind you. Then go out to perform fresh and eager to improv
even more, and from the moment you arrive, invent and walk your own

e

prestige. Carry it around with you with the quiet nature of the man
confident in hi

s authority.”

“It’s a whole new job”

Derren Brown [1]
© Compendium Developments 2003

5 Bibliography

[1] Absolute Magic, Derren Brown, 2001, 1st Edition, Self-Published
[2] Psychology for musicians, Percy C. Buck, 1944
[3] The Art of Teaching Applied to Music, John Warriner, 6th Edition, 1911
[4] Psychology: A study of mental life, R.S. Woodworth, 1927, 7th edition, Methuen & Co. Ltd.
[5] Not Pulling Strings, Joseph O’Connor, 1989, Metamorphous Press
[6] Artist of Life, Bruce Lee, 2001, Tuttle Publishing
[7] Boost your testing super powers, James Bach, [www.stickyminds.com/s.asp?F=S3033_COL_2]
[8] TestWare for Free, Danny Faught, [www.stickyminds.com/s.asp?F=S6454_COL_2]
[9] Session Based Testing, Jonathan Bach
[10] Adventures in session based testing, James Lyndsay, Niel vanEeden [www.workroom-
productions.com/papers/AISBT.pdf]
[11] How to Break Software, James A. Whittaker, 2003, Pearson Education
[12] Lessons Learned in Software Testing, Cem Kaner, James Bach, Bret Pettichord, 2002, Wiley
[13] I am a Bug, Robert Sabourin, 1999
[14] Gestalt Therapy: Excitement and Growth in the Human Personality, Frederick Perls, Ralph F.
Hefferline, Paul Goodman, 1951, Dell Publishing

6 Appendix A - Tool Pointers

	
System
Info

	 Screenshots

	 Clipboard utilities

Emulators

	
Version Control
& Backups

	 Watchers

	 Diff

	 VNC

Tools To Help
21/08/2003 - v11

	D Aida32

	D Freshdiagnose

	D Sysinternals.com

	D Filemon

	D Debugview

	D Handle

	D Portmon

	D Process Explorer

	D Regmon

	D And more...

	D Snagit

	D Mirek's MWSnap

D Clipmate

D Yankee Clipper 	D Virtual PC

	D VMWare

	D Bochs

	D Keep it

	D SmartSync

	D 7-zip

	D PicoZip

	D WinCvs

	D InstallRite

	D InCtrl5

	D Beyond Compare

	D Winmerge

TightVNC

UltraVNC

Free
Cheap

6.1 System Info
These tools aid the reporting and monitoring of the current environment.

Aida32
 http://www.aida32.hu/
A diagnostics, reporting tool. Very simple, and very thorough. Produces good and easy to understand
reports.
Freshdiagnose
 http://www.freshdevices.com/freshdiag.html
A diagnostics, reporting tool. The reports are slightly less user friendly.
Sysinternals.com
 http://www.sysinternals.com/
SysInternals is a great site for utilities. These are mainly aimed at the developer but are of enormous
use for the tester that wants to increase the level of detail that they are able to report to the developer.
Filemon
 http://www.sysinternals.com/ntw2k/source/filemon.shtml
SysInternals is a great site for utilities. These are mainly aimed at the developer but are of enormous

www.compendiumdev.co.uk 24 © Compendium Developments 2003

http://www.stickyminds.com/s.asp?F=S3033_COL_2
http://www.stickyminds.com/s.asp?F=S6454_COL_2
http://www.workroom-productions.com/papers/AISBT.pdf
http://www.workroom-productions.com/papers/AISBT.pdf
http://www.aida32.hu/
http://www.freshdevices.com/freshdiag.html
http://www.sysinternals.com/
http://www.sysinternals.com/ntw2k/source/filemon.shtml

use for the tester that wants to increase the level of detail that they are able to report to the developer.
Debugview
 http://www.sysinternals.com/ntw2k/freeware/debugview.shtml
DebugView lets you monitor debug output. Which can be very revealing.
Handle
 http://www.sysinternals.com/ntw2k/freeware/handle.shtml
Handle displays information about open handles for any process in the system: the files open, or object
types and names of all the handles of a program.
Portmon
 http://www.sysinternals.com/ntw2k/freeware/portmon.shtml
Portmon monitors and displays all serial and parallel port activity on a system.
Process Explorer
 http://www.sysinternals.com/ntw2k/freeware/procexp.shtml
Process Explorer shows you information about which handles and DLLs processes have opened or
loaded.
Regmon
 http://www.sysinternals.com/ntw2k/source/regmon.shtml
Regmon is a Registry monitoring utility for applications are accessing the Registry, which keys they
are accessing, and the Registry data that they are reading and writing.
And more...
 http://www.sysinternals.com/ntw2k/utilities.shtml
There are plenty more utilities available on the site that you may just find a use for.

6.2 Version Control & Backups
Version control and backup is essential.
Keep it
 http://www.keep-it.com/download.asp
Difference backup of various files - cheap version control and very handy for test data files.
SmartSync
 http://www.smsync.com/
SmartSync is a handy little utility that copies files from one directory to another, it can make
incremental backups so that you can restore to various points in time. One particularly handy feature is
that it can copy files as soon as they have been changed.
7-zip
 http://www.7-zip.org/
A free alternative to WinZip.
PicoZip
 http://www.picozip.com/
This is the archiver that I use because I like the ability to create backup sets which are easy to control.
WinCvs
 http://www.wincvs.org/
CVS is a Version Control System which can be complicated to setup but if you really want to get
control over the versioning of files on your system then this is a cheap place to start.
Perforce
http://www.perforce.com
It isn’t free unless you have less than 2 users, but this is a very easy to use Version Control System.

6.3 Emulators
Virtual PC
 http://www.microsoft.com/windowsxp/virtualpc
Now bought by Microsoft, this is the PC emulator that I use. VMWare is a close competitor and you
should try both on the evaluation license to see which one you prefer.
VMWare
 http://www.vmware.com/
Another excellent commercial PC Emulator.

www.compendiumdev.co.uk 25 © Compendium Developments 2003

http://www.sysinternals.com/ntw2k/freeware/debugview.shtml
http://www.sysinternals.com/ntw2k/freeware/handle.shtml
http://www.sysinternals.com/ntw2k/freeware/portmon.shtml
http://www.sysinternals.com/ntw2k/freeware/procexp.shtml
http://www.sysinternals.com/ntw2k/source/regmon.shtml
http://www.sysinternals.com/ntw2k/utilities.shtml
http://www.keep-it.com/download.asp
http://www.smsync.com/
http://www.7-zip.org/
http://www.picozip.com/
http://www.wincvs.org/
http://www.perforce.com/
http://www.microsoft.com/windowsxp/virtualpc
http://www.vmware.com/

Bochs
 http://bochs.sourceforge.net/
Another excellent free PC Emulator.

6.4 Clipboard utilities
Incredibly useful tools which I use during every beta test. Either to store test data in the clipboard for
reuse, to track notes about the testing, or just to view the clipboard contents.
Clipmate
 http://www.thornsoft.com/
Yankee Clipper
 http://www.yankee-clipper.net/

6.5 Watchers
These tools are incredibly useful during the install of a system to take a snapshot before install and
compare it with a snapshot after.
InstallRite
 http://www.epsilonsquared.com/
This tool is completely free and very simple to use.
InCtrl5
 http://www.pcmag.com/article2/0,4149,25126,00.asp
This is a non-free install watcher which is used by PC Magazine when testing software.

6.6 Diff
Data file compares are a common requirement when testing.
Beyond Compare
 http://www.scootersoftware.com/
This is may favourite compare tool which can be extended with plugs ins.
Winmerge
 http://winmerge.sourceforge.net/
This is a free equivalent which is often used in conjunction with CVS to compare different versions of
files.

6.7 VNC
 http://www.uk.research.att.com/vnc/
My favourite remote machine controller which I use when testing software on a different machine on
the network. It comes in a number of free variants which add extra security or optimised display
refreshing.
TightVNC
 http://www.tightvnc.com/
UltraVNC
 http://ultravnc.sourceforge.net/

6.8 Screenshots
This is the single most useful tool category in here. Which is surprising given the simplicity of the tool
and the fact that windows already has most of the functionality you need to do this, but these tools save
me time when recording screenshots and allow me to focus in on the areas that are important and that is
one of the key elements of a successful defect report.
SnagIt

www.compendiumdev.co.uk 26 © Compendium Developments 2003

http://bochs.sourceforge.net/
http://www.thornsoft.com/
http://www.yankee-clipper.net/
http://www.epsilonsquared.com/
http://www.pcmag.com/article2/0,4149,25126,00.asp
http://www.scootersoftware.com/
http://winmerge.sourceforge.net/
http://www.uk.research.att.com/vnc/
http://www.tightvnc.com/
http://ultravnc.sourceforge.net/

 http://www.techsmith.com/
This is my favourite screenshot program with more options than are actually required but I have it
running constantly.
Mirek's MWSnap
 http://www.mirekw.com/winfreeware/mwsnap.html
This is my favourite screenshot program with more options than are actually required but I have it
running constantly.
CamTasia
http://www.techsmith.com
CamTasia will record your screen actions as a movie and save it to a flash file for easy, space saving,
viewing.
CamStudio
http://www.ehelp.com/camstudio/product/screenrecording
A free competitor to CamTasia

There are so many tools in this category that I really can’t list them all, but the most obvious
competitors to the above that I find worthy of mention are from http://www.hyperionics.com/.

6.9 Fault Injection
Holodeck
 http://howtobreaksoftware.com/ http://www.sisecure.com/holodeck
A ‘lite’ version of holodeck is provided on the “How to Break Software” CD. And it has now gone
commercial. I haven’t used it during beta testing, but felt remiss in not adding it in here as it allows you
to control the environment that the system under test is running by simulating environmental faults
(‘disk full’, ‘out of memory’, etc.)

7 Appendix B – How to Find Software
Beta
Programme
Websites

Open
Source

Shareware
Misc

How To Find
Software
03/09/2003 - v11

	D Betanews.com
	D Betatester.com
	D SoftwareMarketingResources.com
	D Betatests.net
	D Centercode
	D BetaSphere.com

	 Commercial Programmes D Adobe

	D Freshmeat
	D Sourceforge

	D Gnu

	 Get invited

D ASP-shareware.com

	D
How to become a
microsoft Beta Tester

	D Google search
	D Debugging by testing Article

	D Effective Beta Testing Essay
	 Beta Testing For Better Software

	D Atriarch Instructions to Beta Testers

winplanet.com/winplanet/subjects/255/

mibsoftware.com/bazdev/0015.htm

Amazon.com Amazon.co.uk

Betanews.com
www.betanews.com/
The Betanews website lists loads of beta test programmes to get involved in.
Betatester.com
betatester.tin.it/en/
Another site listing new programs ready for beta testing.
SoftwareMarketingResources.com
www.softwaremarketingresource.com/betatesting.html
This page, on the excellent shareware marketing resources site has a list of beta testing sites
Betatests.net

www.compendiumdev.co.uk 27 © Compendium Developments 2003

http://www.techsmith.com/
http://www.mirekw.com/winfreeware/mwsnap.html
http://www.techsmith.com/
http://www.ehelp.com/camstudio/product/screenrecording
http://howtobreaksoftware.com/
http://www.betanews.com/
http://betatester.tin.it/en/
http://www.softwaremarketingresource.com/betatesting.html

www.betatests.net/
If you want to test games then this is the place to visit
Centercode
www.centercode.com/mkt/
This company offers to manage beta testing for software developers and will put you in touch with
companies looking for beta testers. They have a hosted beta community programme.
BetaSphere.com
www.betasphere.com/evaluator-center/index.html
BetaSphere will put you in touch with companies looking for beta testers.
Association of Shareware Professionals
www.asp-shareware.org
The ASP is an organisation for Shareware developers. If you join then you will have access to their
member newsgroups and there are often calls for beta testers. You could also try posting a message on
their public newsgroup (Details available on their website) and see if anyone responds. If you do join
then there are a large number of free licenses available which are given away by member, too
members. I recommend this if you want to really help smaller developers produce quality products.
Adobe
www.adobe.com/products/tryadobe/betatesting.html
Adobe, like many large companies, has a web page dedicated to their beta test programmes. Check out
the web sites of companies you respect.
Google search
www.google.com/search?q=betatest&sourceid=opera&num=0&ie=utf-8&oe=utf-8
This always pops up interesting stuff

Miscellaneous resources
How to become a Microsoft Beta Tester
www.winplanet.com/winplanet/subjects/255/
This is an article on how to become a Microsoft beta tester.
Effective Beta Testing Essay
www.developsense.com/EffectiveBetaTesting.html
essay on beta testing which might be useful
Beta Testing For Better Software
www.amazon.co.uk/exec/obidos/ASIN/0471250376/compendiumdev-21
www.amazon.com/exec/obidos/ASIN/0471250376/compendiumdev-20
A book on beta testing to help companies conduct their beta testing programmes better.
Atriarch Instructions to Beta Testers
www.atbeta.com/beta_faq.php
What one company wants from their beta testers.

Open Source
Freshmeat
www.freshmeat.net
Loads of new software listed every day for you to help test.
Sourceforge
www.sourceforge.com
Open source software ready to beta test.
Gnu
www.gnu.org
GNU software homepage

www.compendiumdev.co.uk 28 © Compendium Developments 2003

http://www.betatests.net/
http://www.centercode.com/mkt/
http://www.betasphere.com/evaluator-center/index.html
http://www.asp-shareware.org/
http://www.adobe.com/products/tryadobe/betatesting.html
http://www.google.com/search?q=betatest&sourceid=opera&num=0&ie=utf-8&oe=utf-8
http://www.winplanet.com/winplanet/subjects/255/
http://www.developsense.com/EffectiveBetaTesting.html
http://www.amazon.co.uk/exec/obidos/ASIN/0471250376/compendiumdev-21
http://www.amazon.com/exec/obidos/ASIN/0471250376/compendiumdev-20
http://www.atbeta.com/beta_faq.php
http://www.freshmeat.net/
http://www.sourceforge.com/
http://www.gnu.org/

www.compendiumdev.co.uk 29 © Compendium Developments 2003

8 Appendix C - Techniques to Try
This is a short list of pointers to techniques that you could try out. Some have a bit more text than
others, some have hints on how to practise them, but they are just suggestions. Build your own list and
work through it. Put it into a mind map and explore the areas that are there to explore.

Model based testing
Check out Harry Robinson’s web site [www.model-based-testing.org] for articles on how to do this,
particularly [www.geocities.com/harry_robinson_testing/shoestring.htm]

Session based testing
If you want to try session based testing then head over to James Bach’s site [www.satisfice.com] and
browse, download his Perl scripts then head over to James Lyndsay’s site [www.workroom-
productions.com] check out his paper and download his Session Based Testing Timer.

Tool Usage
There are test tools out there that you can download and try out. Many are listed on the testing tools
faqs page [testingfaqs.org]
• T-Plan is a test management tool with a downloadable demo www.t-plan.co.uk
• Mercury Interactive have demos too [www.mercuryinteractive.com/products/downloads.html]

Test Planning
Practise test planning. Spend an hour practising test planning, with a pen and paper. You don’t have to
write a document, just write the plan. Separate the content from the presentation and figure out what is
the most important information you need in order to plan.

Validate the plan by looking at the existing/known/fixed defects lists. How many would your test plan
find? What would you have to put in the plan in order to find them?

Pair Testing
Get a friend. Get testing together. Get more of you and you can test distributed systems, group ware,
multi user systems. You don’t have to go it alone. What mechanisms will you use to collaborate? How
will you co-ordinate it? What relevance does this have for outsourced testing or development?

API based testing
The Microsoft Office products have a simple Object model that allows them to be automated. You can
use that to test these products using scripting languages, or VB, or any language that you know. They
even have programming languages built in. Try it and see if that is an acceptable way to automate tests.
What pitfalls do you find?

Other tools have API interfaces. Investigate them and try it out.

Build a list of Techniques
Pick up a Testing book and Check out the techniques.

Check out these ‘Testing Standards’ and try the techniques. [www.testingstandards.co.uk]

Try a Free Training Course

Visit Testing Education [www.testingeducation.com] and check out the training notes on offer.

And as a starter for 10 for your own list…
Graph based testing, Cause effect graphing, Performance testing. Stress Testing, Load Testing,
Automated Testing, Domain analysis, Boundary value analysis, Equivalence partitioning, How to break
software

The End
For Now…

http://www.model-based-testing.org/
http://www.geocities.com/harry_robinson_testing/shoestring.htm
http://www.satisfice.com/
http://www.workroom-productions.com/
http://www.workroom-productions.com/
http://testingfaqs.org/
http://www.t-plan.co.uk/
http://www.mercuryinteractive.com/products/downloads.html
http://www.testingstandards.co.uk/
http://www.testingeducation.com/

	Introduction
	On Practising and Learning
	Are you in a rut?

	Why should you beta test?
	Objections
	Calculating the value of being a beta tester

	Expand your experience
	How am I defining Beta Testing?
	What should you beta test?

	Exploring The Beta Testing Context
	Context Attributes
	The Development Factor
	Beta Programmes Explored
	Large and Small beta programmes
	Open Source vs. the large & small
	Beta Programmes Summarised

	How to Beta test
	Finding Software To Beta Test
	Open Source
	Commercial
	Shareware

	It’s Not In Beta
	Tools To Use
	Install Monitoring Tools
	System Tools
	Screenshots & Video Recording
	Clipboard
	How to Build a Test Lab (Environment tools)
	Backups & Version Control
	The Environment itself
	PC Emulators
	Removable Hard Drives
	Multiple Machines

	Finding new tools

	How to Practise Testing when Beta Testing
	Session based testing
	How to practise techniques
	Practising a New Technique
	Alternative Practise Strategies

	Your Constraints are Challenges

	An Example Approach to beta testing
	Session 1
	
	Installation Testing
	Uninstallation Testing
	Software Overview (learning)

	Session 2 and beyond

	Knowing what to test (some notes)

	End Notes
	Bibliography
	Appendix A - Tool Pointers
	System Info
	Version Control & Backups
	Emulators
	Clipboard utilities
	Watchers
	Diff
	VNC
	Screenshots
	Fault Injection

	Appendix B – How to Find Software
	Appendix C - Techniques to Try

